forked from gabrielakinker/CCLE_heterogeneity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule5_cna_subclones.R
127 lines (98 loc) · 5.82 KB
/
module5_cna_subclones.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# ----------------------------------------------------------------------------------------------------
# Module 5. Inferring CNV subclones in cell lines using scRNA-seq data
# ----------------------------------------------------------------------------------------------------
# **************************************************************************
# Basic setup
# load necessary R packages and functions
library(mclust)
# read gene locus annotation
gene_locus <- readRDS("CCLE_heterogeneity_Rfiles/gene_locus.RDS")
# read scRNA-seq data (CPM) from cell lines
expr_ccle <- readRDS("CCLE_heterogeneity_Rfiles/CCLE_scRNAseq_CPM.RDS")
# select common genes between datasets
common_genes <- Reduce(intersect, c(lapply(expr_ccle, rownames), list(gene_locus$HGNC.symbol)))
gene_locus <- gene_locus[match(common_genes, gene_locus$HGNC.symbol),]
expr_ccle <- lapply(expr_ccle, function(x) x[common_genes,])
# select top expressed genes
ave_expr <- rowMeans(sapply(expr_ccle, rowMeans))
expr_ccle <- lapply(expr_ccle, function(x) x[order(ave_expr, decreasing = T)[1:7000],])
gene_locus <- gene_locus[match(row.names(expr_ccle$NCIH2126_LUNG), gene_locus$HGNC.symbol),]
# process data
expr_ccle <- lapply(expr_ccle, function(x) log2((x/10) + 1))
expr_ccle <- lapply(expr_ccle, function(x) t(t(x)-colMeans(x)))
ave_expr_log <- rowMeans(sapply(expr_ccle, rowMeans))
expr_ccle <- lapply(expr_ccle, function(x) x - ave_expr_log)
# **************************************************************************
# Infer large scale copy number aberrations in chromosome arms
# truncate expression data
for(i in names(expr_ccle)) {
expr_ccle[[i]][expr_ccle[[i]] > 3] <- 3
expr_ccle[[i]][expr_ccle[[i]] < -3] <- -3
}
# genes by chromosome location
gene_order <- gene_locus$HGNC.symbol[order(gene_locus$Chromosome.scaffold.name, gene_locus$Karyotype.band)]
# calculate running average expression in windows of 100 genes
cna_infer <- list()
for(i in names(expr_ccle)) {
a <- expr_ccle[[i]][gene_order,]
b <- data.frame(matrix(ncol = nrow(a) - 99, nrow = ncol(a)), row.names = colnames(a))
for(j in 1:ncol(b)) {
b[,j] <- colMeans(a[j:(j+99),])
}
cna_infer[[i]] <- b
}
# save
saveRDS(cna_infer, "Output/module5/cna_infer_ccle.RDS")
# determine the limits of each chromosome arm in the inferred cna matrix
chr_arms_size <- table(gene_locus$chr.arm) # get the number of genes in each chr arm
chr_arms_size <- chr_arms_size[order(as.numeric(gsub('.{1}$', '', names(chr_arms_size))), names(chr_arms_size))] # order by chr location
window_vs_arm <- c(rep(names(chr_arms_size)[1],chr_arms_size[1]-50)) # annotate the chormosome arm of each window in the inferred cna matrix
for(i in 2:length(chr_arms_size)) {
window_vs_arm <- c(window_vs_arm, rep(names(chr_arms_size)[i], (chr_arms_size)[i]))
}
window_vs_arm <- window_vs_arm[1:6901]
# average the inferred cna matrix by chromossome arm
cna_infer_arm <- lapply(cna_infer, function(x) data.frame(aggregate(t(x), by=list(window_vs_arm), mean), row.names = 1))
# save
saveRDS(cna_infer_arm, "Output/module5/cna_infer_arm_ccle.RDS" )
# **************************************************************************
# Detection of arm-level CNA subclones
# fit a bimodal Gaussian mixture (via EM algorithm) for each arm in each cell line
gmm_test <- lapply(cna_infer_arm, function(x) apply(x, 1, function(y) Mclust(y, G=1:2)))
# confindently define cell lines that have subclones (i.e. those with > 20 cells classified into a second mode with > 99% confidence)
cna_subclones <- lapply(gmm_test, function(x) lapply(x, function(y) data.frame("class"=y$classification, "uncer" = y$uncertainty)))
for(i in names(cna_subclones)) {
for(j in names(cna_subclones[[i]])) {
a <- cna_subclones[[i]][[j]]
a <- a[a$uncer<0.01,]
if(length(which(table(a$class) > 20)) <2) cna_subclones[[i]][[j]] <- NULL
}
}
cna_subclones <- cna_subclones[sapply(cna_subclones, function(x) length(x)!=0)]
# save
saveRDS(cna_subclones, "Output/module5/cna_subclones_ccle.RDS")
# confindently assign cells to clones (only consider cells classified with >90% confidence)
clone_assignment <- list()
for(i in names(cna_subclones)) {
if(length(cna_subclones[[i]]) > 1) { # more than one clone - we considered all combinations of modes with at least 5 cells.
a <- colnames(expr_ccle[[i]])
b <- do.call(paste, lapply(cna_subclones[[i]], function(x) x[["class"]]))
b <- data.frame("cell"=a, "class"=b, stringsAsFactors = F)
c <- sapply(cna_subclones[[i]], function(x) x[["uncer"]])
b <- b[apply(c,1,function(x) length(which(x<=0.1))==length(x)),]
b <- b[is.element(b$class, names(which(table(b$class)>=5))),]
d <- data.frame(names(sort(table(b$class), decreasing = T)), 1:length(unique(b$class)), stringsAsFactors = F)
b$final_class <- d[,2][match(b$class, d[,1])]
b$final_class <- paste(i, "_", b$final_class, sep="")
clone_assignment[[i]] <- b
}
if(length(cna_subclones[[i]]) == 1) { # only one clone - we defined two clones corresponding to the two modes
a <- colnames(expr_ccle[[i]])
b <- data.frame("cell"=a, "class"=cna_subclones[[i]][[1]][["class"]], stringsAsFactors = F)
b <- b[cna_subclones[[i]][[1]][["uncer"]] <= 0.1,]
b$final_class <- paste(i, "_", b$class, sep="")
clone_assignment[[i]] <- b
}
}
# save
saveRDS(clone_assignment, "Output/module5/clone_assignment_ccle.RDS")