-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathnextflow.config
128 lines (111 loc) · 2.88 KB
/
nextflow.config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
profiles {
docker {
docker.enabled = true
process { container = 'quay.io/cellgeni/batchbench:v0.28'}
}
local {
process.executor = 'local'
executor {
name = 'local'
cpus =30
memory = 345.GB
}
process {
cpus = 1
memory = 8.GB
queue = 'normal'
errorStrategy = 'ignore'
maxRetries = 4
maxErrors = -1
withLabel: long_running {queue = 'long'}
}
}
}
params{
data_dir="${baseDir}/data/test_data/"
dataset_list="${baseDir}/metadata/dataset_list.txt"
output_dir="${baseDir}/results/test_data_results/"
// object related params
batch_key = 'Batch'
celltype_key = 'cell_type1'
assay_name = "logcounts"
corrected_assay = "corrected"
corrected_emb = "corrected_emb"
QC_rds{
batch_thres = 0 // Minimum proportion of total cells for a batch to be considered.
celltype_thres = 0 // Minimum proportion of total cells for a cell type to be considered
min_genes = 0 // Min number of genes expressed per cell.
min_cells = 0 // Min number of cells for a gene to be expressed in.
}
BBKNN{
run= "True" // must be 'True' or 'False'
n_pcs = 25
n_neighbours = 10
}
scanorama{
run= "True" // must be 'True' or 'False'
}
harmony{
run= "True" // must be 'True' or 'False'
n_pcs = 50
}
Limma{
run= "True" // must be 'True' or 'False'
}
Combat{
run= "True" // must be 'True' or 'False'
}
Seurat_3{
run= "True" // must be 'True' or 'False'
hvg_method = "dispersion"
n_features = 2000
verbose = 'FALSE'
n_anchors = 30
}
mnnCorrect{
run= "True" // must be 'True' or 'False'
k = 30
sigma = 0.1
cos_norm = "TRUE"
svd_dim = 2
}
fastMNN{
run= "True" // must be 'True' or 'False'
k = 30
cos_norm = "TRUE"
n_pcs = 50
}
entropy{
run= "True" // must be 'True' or 'False'
k_num = 30 // number of nearest neighbours per cell to construct the graph
dim_num = 50 // number of dimensions to use for a PCA on the expression matrix prior to the nearest neighbor search
}
clust_SC3{
run= "True" // must be 'True' or 'False'
clust_logcounts = "True" // must be 'True' or 'False'
biology = "False" // wether to calculate biological features based on the identified cell clusters
}
clust_Seurat{
run= "True" // must be 'True' or 'False'
clust_logcounts = "True" // must be 'True' or 'False'
n_pcs = 25 //n of PCs for dim reduction
k_num = 30 // n of NN for graph construction
}
clust_Hierarch{
run= "True" // must be 'True' or 'False'
clust_logcounts = "True" // must be 'True' or 'False'
}
clust_RaceID{
run= "True" // must be 'True' or 'False'
clust_logcounts = "True" // must be 'True' or 'False'
dist_metric = "pearson" //options are: 'spearman', 'pearson', 'logpearson', 'euclidean', 'rho', 'phi', 'kendall'
}
find_markers{
run= "True" // must be 'True' or 'False'
}
UMAP{
run= "True" // must be 'True' or 'False'
n_neighbours = 30
n_pcs = 20
}
}