-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
171 lines (134 loc) · 7.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import math
import torch.nn
from torch.nn.functional import one_hot
from data import indices_extra, pitch_sizes_parts, indices_parts
class BachNetTrainingContinuo(torch.nn.Module):
def __init__(self, hidden_size, context_radius, dropout=0.5):
super(BachNetTrainingContinuo, self).__init__()
self.bass = torch.nn.Sequential(
torch.nn.Linear(
(2 * context_radius + 1) * (pitch_sizes_parts['soprano'] + len(indices_parts)) +
(2 * context_radius + 1) * len(indices_extra) +
context_radius * (pitch_sizes_parts['bass'] + len(indices_parts)),
hidden_size
),
torch.nn.SELU(),
torch.nn.Dropout(dropout),
torch.nn.Linear(hidden_size, hidden_size),
torch.nn.SELU(),
torch.nn.Dropout(dropout),
torch.nn.Linear(hidden_size, pitch_sizes_parts['bass'] + len(indices_parts)),
)
def forward(self, inputs):
batch_size = inputs['soprano'].shape[0]
inputs_bass = torch.cat([inputs[k].view(batch_size, -1) for k in ['soprano', 'bass', 'extra']], dim=1)
outputs_bass = self.bass(inputs_bass)
return {
'bass': outputs_bass
}
class BachNetTrainingMiddleParts(torch.nn.Module):
def __init__(self, hidden_size, context_radius, dropout=0.5):
super(BachNetTrainingMiddleParts, self).__init__()
self.alto = torch.nn.Sequential(
torch.nn.Linear(
(2 * context_radius + 1) * (pitch_sizes_parts['soprano'] + len(indices_parts)) +
(2 * context_radius + 1) * (pitch_sizes_parts['bass'] + len(indices_parts)) +
(2 * context_radius + 1) * len(indices_extra) +
context_radius * (pitch_sizes_parts['alto'] + len(indices_parts)) +
context_radius * (pitch_sizes_parts['tenor'] + len(indices_parts)),
hidden_size
),
torch.nn.SELU(),
torch.nn.Dropout(dropout),
torch.nn.Linear(hidden_size, hidden_size),
torch.nn.SELU(),
torch.nn.Dropout(dropout),
torch.nn.Linear(hidden_size, pitch_sizes_parts['alto'] + len(indices_parts)),
)
self.tenor = torch.nn.Sequential(
torch.nn.Linear(
(2 * context_radius + 1) * (pitch_sizes_parts['soprano'] + len(indices_parts)) +
(2 * context_radius + 1) * (pitch_sizes_parts['bass'] + len(indices_parts)) +
(2 * context_radius + 1) * len(indices_extra) +
context_radius * (pitch_sizes_parts['alto'] + len(indices_parts)) +
context_radius * (pitch_sizes_parts['tenor'] + len(indices_parts)) +
(pitch_sizes_parts['alto'] + len(indices_parts)),
hidden_size
),
torch.nn.SELU(),
torch.nn.Dropout(dropout),
torch.nn.Linear(hidden_size, hidden_size),
torch.nn.SELU(),
torch.nn.Dropout(dropout),
torch.nn.Linear(hidden_size, pitch_sizes_parts['tenor'] + len(indices_parts)),
)
def forward(self, inputs):
batch_size = inputs['soprano'].shape[0]
inputs_alto = torch.cat(
[inputs[k].view(batch_size, -1) for k in ['soprano', 'alto', 'tenor', 'bass_with_context', 'extra']], dim=1)
outputs_alto = self.alto(inputs_alto)
prediction_alto = one_hot(torch.max(outputs_alto, dim=1)[1],
pitch_sizes_parts['alto'] + len(indices_parts)).float()
inputs_tenor = torch.cat([inputs_alto, prediction_alto], dim=1)
outputs_tenor = self.tenor(inputs_tenor)
return {
'alto': outputs_alto,
'tenor': outputs_tenor
}
class BachNetInferenceContinuo(BachNetTrainingContinuo):
def __init__(self, num_candidates, *args, **kwargs):
super(BachNetInferenceContinuo, self).__init__(*args, **kwargs)
self.num_candidates = num_candidates
def forward(self, inputs):
num_parts = 3
results = torch.zeros(
(self.num_candidates, 1 + num_parts)) # [[Candidate index], [[ProbAcc, PitchB, PitchA, PitchT]]
inputs_bass = torch.cat([
inputs[k].view(1, -1) for k in ['soprano', 'bass', 'extra']
], dim=1).squeeze()
outputs_bass = self.bass(inputs_bass)
log_probabilities, pitches = torch.sort(torch.log(torch.softmax(outputs_bass, dim=0)), dim=0, descending=True)
results[:, 0] = log_probabilities[:self.num_candidates]
results[:, 1] = pitches[:self.num_candidates]
return results
class BachNetInferenceMiddleParts(BachNetTrainingMiddleParts):
def __init__(self, num_candidates, *args, **kwargs):
super(BachNetInferenceMiddleParts, self).__init__(*args, **kwargs)
self.num_candidates = num_candidates
self.weight_alto = 1
self.weight_tenor = 1
def set_part_weights(self, loss_alto, loss_tenor):
maximum = max(1 / loss_alto, 1 / loss_tenor)
self.weight_alto = 1 / loss_alto / maximum
self.weight_tenor = 1 / loss_tenor / maximum
def forward(self, inputs):
num_parts = 3
results = torch.zeros(
(self.num_candidates, 1 + num_parts)) # [[Candidate index], [[ProbAcc, PitchB, PitchA, PitchT]]
# Alto #################################################################
inputs_alto = torch.cat(
[inputs[k].view(1, -1) for k in ['soprano', 'alto', 'tenor', 'bass_with_context', 'extra']],
dim=1).squeeze() # !!! SQUEEZED !!!
outputs_alto = self.alto(inputs_alto)
log_probabilities, pitches = torch.sort(torch.log(torch.softmax(outputs_alto, dim=0)), dim=0, descending=True)
log_probabilities += math.log(self.weight_alto)
results[:, 0] = log_probabilities[:self.num_candidates]
results[:, 1] = pitches[:self.num_candidates]
# Tenor #################################################################
inputs_tenor = torch.cat([
inputs_alto.repeat(self.num_candidates, 1),
one_hot(results[:, 1].long(), pitch_sizes_parts['alto'] + len(indices_parts)).float()
], dim=1)
outputs_tenor = self.tenor(inputs_tenor)
log_probabilities = torch.log(torch.softmax(outputs_tenor, dim=1))
log_probabilities += math.log(self.weight_tenor)
log_probabilities = log_probabilities.t() + results[:, 0]
log_probabilities, pitches_indices = torch.sort(log_probabilities.t().contiguous().view(1, -1).squeeze(), dim=0,
descending=True)
pitches_tenor = pitches_indices % (pitch_sizes_parts['tenor'] + len(indices_parts))
history_indices = pitches_indices // (pitch_sizes_parts['tenor'] + len(indices_parts))
pitches_alto = results[:, 1][history_indices]
results[:, 0] = log_probabilities[:self.num_candidates]
results[:, 1] = pitches_alto[:self.num_candidates]
results[:, 2] = pitches_tenor[:self.num_candidates]
return results