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Statement of Problem

I News in the internet-age is decentralized

I This is good
I More voices means more perspectives
I Greater access means more more refined coverage

I This is also bad
I It’s hard to detect bias
I “We report, you decide”

I I want to automatically determine if text has a political slant.
I This is a very broad problem.
I This is a very hard problem.
I This is a very vague problem.
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Challenges

I Need to extract text from HTML

I This is taken care of for us by the Boilerpipe library in Java

I Need to classify text as political or apolitical
I Need to classify political text as left-leaning, right-leaning or

centrist
I These categories are vague and inherrently subjective
I Need to make them the least subjective as possible

I Be as lazy as possible
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Bias Classification
Polarity Classification

A Model for Political Orientation

I This can be tackled with NLP classification techniques

I Need a sample of politically oriented text segmented by
political bias

I “Bias” is difficult to characterize
I One approach is to map politicians onto a 1-D spectrum and

segment the specrum into left, right and center
I Use the speeches from the politicians as samples
I All that is left is determining relative position on the 1-D

spectrum and gathering the data

I Thankfully, I found a dataset with speeches from senators
from the 111th Congress
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Bias Classification
Polarity Classification

Computational Political Science

I Computational Political Science to the Rescue

I The idea is to use roll-call votes to fit senators onto the 1-D
spectrum from left-to-right.

I Senators and bills are fitted to the 1-D spectrum using logistic
regression

I The fitting is such that a senator’s proximity to a bill is
proportional to their probability for voting ’Yay’ on the bill

I This provides an ordering that groups senators by voting record

I The hard statistics is done for me by the good people at
voteview.com

I Obviously the model is simplification, but for the purpose of
this project, we’ll pretend it’s a pretty good model.
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Machine Learning

I Now we have a set of documents associated with political
orientations

I We can split the dataset into a training set and testing set
and evaluate different machine learning algorithms

I Tried many algorithms, but the ones that worked best was
Adaptively Boosted Decision Trees

I Decision Tree classifiers “learns” a decision tree by being
presented with many examples from a set of categories. The
leaves of the trees are categories and the interior nodes are
input variables.

I This is a weak classifier, but can be boosted by creating a
meta-learning algorithm on top called adaptive boosting
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Evaluation of Bias Classifier

I I chose the middle 5
8

th
of the data to be my center

I Total Accuracy (95% confidence) is 78%± 0.04

I

Predicted
Left Center Right Total

Actual
Left 46(69%) 16(24%) 4(6%) 66
Center 27(10%) 202(78%) 29(11%) 258
Right 0(0%) 7(11%) 52(88%) 59
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Classifying Text as Political/Apolitical

I We only want to look for bias in political texts, so we need to
know which texts have political content.

I Topic Models can be generated from a corpus of documents
I The best known topic model is Latent Dirichlet Allocation
I Topic models create a set of vectors representing the topics in

the corpus
I New documents can be represented as linear combinations of

topics where the coefficients represent the degree to which a
topic contributes to the document

I Such as, consider topics v1 and v2 which represent roughly
“healthcare” and “the war in iraq”, you can represent a story
about hospitals in the warzone as 0.2v1 + 0.9v2 and a story
about a hospital closing as 0.8v1 + 0v2
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Classifying Text as Political/Apolitical

I We can generate a topic model from the corpus of senatorial
speeches

I This gives us a vector space and a way to map documents
onto it

I Now we can use distance metrics to construct an
inclusion/exclusion criteria for political documents

I Roughly, define a metric || · || and a real number k such that
||~v || < k implies that the document is political for any
document ~v .

I The trick now becomes defining || · ||.
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What did we learn?

I Using good libraries makes hard problems much easier

I I think I might have solved the wrong problem
I When evaluating real data, my classifier sometimes doesn’t

match my gut instinct
I I think this may be due to training on clean data and

evaluating on noisy data
I Also, arbitrary text from the internet isn’t the same style as

political speeches from senators

I Machine Learning is like a wolverine on a leash.
I Once you let it go, you’re never quite sure what it’s going to

do or when it’s going to turn on you and eat your face.

I Cleaning data is important
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Thanks for your attention! Questions?

I Find me at http://caseystella.com

I Twitter handle: @casey stella

I Email address: cestella@gmail.com

I Oh, and by the way, Explorys is hiring!
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