forked from skypilot-org/skypilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt2-pipeline.yaml
129 lines (108 loc) · 4.08 KB
/
gpt2-pipeline.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
name: gpt2-data
envs:
BUCKET_NAME: # TODO: Fill in your bucket name
BUCKET_STORE: s3 # Can be s3, gcs, or r2.
resources:
cpus: 8+
file_mounts:
/cache:
name: $BUCKET_NAME
store: $BUCKET_STORE
mode: MOUNT
setup: |
pip install tqdm tiktoken requests datasets
git clone https://github.com/karpathy/llm.c.git@ed37d9261ba13ef212c01e2de8b309cbb46a2aa7 || true
# Adding revision to fix the dataset version, as the latest fineweb
# dataset removed the samples, causing error:
# Please pass `features` or at least one example when writing data
sed -i 's/fw = load_dataset("HuggingFaceFW\/fineweb", name=remote_name, split="train")/fw = load_dataset("HuggingFaceFW\/fineweb", name=remote_name, split="train", revision="9767af12bf8f0f7d3c91e0345b89bc6b9cbe1a94")/' dev/data/fineweb.py
run: |
cd llm.c
# tokenize the FineWeb dataset 10B tokens sample (takes ~1 hour, get lunch?)
# writes ~19GB of raw GPT-2 tokens to dev/data/fineweb10B
# and ~46GB in ~/.cache/huggingface/datasets/HuggingFaceFW___fineweb
python dev/data/fineweb.py --version 10B
rsync -Pavz --exclude "datasets/downloads/" ~/.cache/huggingface /cache/
rsync -Pavz dev/data/fineweb10B /cache/
---
name: gpt2-train
envs:
BUCKET_NAME: # TODO: Fill in your bucket name
BUCKET_STORE: s3 # Can be s3, gcs, or r2.
resources:
accelerators: A100:8
# Use docker image for latest version g++ to enable the compilation of llm.c.
image_id: docker:nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04
any_of:
# Avoid using docker image for lambda due to the docker is not supported on
# Lambda yet, but the base image works.
- cloud: lambda
image_id: null
- cloud: aws
- cloud: gcp
- cloud: azure
- cloud: fluidstack
- cloud: kubernetes
file_mounts:
~/.cache/huggingface:
name: $BUCKET_NAME
store: $BUCKET_STORE
mode: COPY
setup: |
cd ~
# install cudnn so we can use FlashAttention and run fast (optional)
# https://developer.nvidia.com/cudnn-downloads
# for me, CUDA 12 (run `nvcc --version`) running on Linux x86_64 Ubuntu 22.04
if [ -f ./CUDNN_INSTALLED ]; then
echo "cudnn already installed"
else
system=$(lsb_release -si | tr '[:upper:]' '[:lower:]')
# Get version and remove the dot
version=$(lsb_release -sr | tr -d .)
export system_version="${system}${version}"
wget https://developer.download.nvidia.com/compute/cudnn/9.1.1/local_installers/cudnn-local-repo-${system_version}-9.1.1_1.0-1_amd64.deb -O cudnn-installer.deb
sudo dpkg -i cudnn-installer.deb
sudo cp /var/cudnn-local-repo-${system_version}-9.1.1/cudnn-*-keyring.gpg /usr/share/keyrings/
# Remove problematic kubernetes.list source
sudo apt-get update --allow-releaseinfo-change || true
sudo apt-get -y install cudnn-cuda-12
touch ./CUDNN_INSTALLED
fi
# "install" cudnn-frontend to ~/
sudo apt -y install git
git clone https://github.com/NVIDIA/cudnn-frontend.git || true
# install MPI (optional, if you intend to use multiple GPUs)
# SkyPilot do not install MPI as that requires NCCL which needs to be manually
# installed.
sudo apt install -y openmpi-bin openmpi-doc libopenmpi-dev
# install nccl
pip install nvidia-nccl-cu12
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/nccl2/lib
export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/usr/local/nccl2/include
git clone https://github.com/karpathy/llm.c.git || true
cd llm.c
ln -s ~/.cache/huggingface/fineweb10B dev/data/
# compile llm.c (mixed precision, with cuDNN flash-attention)
# first compilation is ~1 minute, mostly due to cuDNN
make train_gpt2cu USE_CUDNN=1
run: |
cd ~/llm.c
# train on multiple GPUs
mpirun -np $SKYPILOT_NUM_GPUS_PER_NODE --allow-run-as-root ./train_gpt2cu \
-i "dev/data/fineweb10B/fineweb_train_*.bin" \
-j "dev/data/fineweb10B/fineweb_val_*.bin" \
-o log124M \
-e "d12" \
-b 64 -t 1024 \
-d 524288 \
-r 1 \
-z 1 \
-c 0.1 \
-l 0.0006 \
-q 0.0 \
-u 700 \
-n 5000 \
-v 250 -s 20000 \
-h 1
# Upload the log and model to the bucket
rsync -Pavz log124M ~/.cache/huggingface