-
Notifications
You must be signed in to change notification settings - Fork 0
/
sparsify_model.py
582 lines (539 loc) · 23.8 KB
/
sparsify_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import torch.nn as nn
import torch
import cvxpy as cp
import copy
import numpy as np
import os
from scipy.stats import norm
from layers_modules import layers_modules_maps, linear_layers_maps, ignored_layers_map
from activation_modules import activations_layer_map
from .cp_losses import softmax_loss
from training.utils import bound_propagation, test_batch, device
from contextlib import redirect_stdout
from training import Mode
import gc
from .sparsify_base import SparsifyBase
class SparsifyModel(SparsifyBase):
def __init__(
self,
model_train_obj,
sparsification_weight=5,
threshold=1e-3,
relaxed_constraints=False,
mean_threshold=False,
):
"""initialization of sparsify model object
Arguments:
model_train_obj {ModelTrain} -- ModelTrain object used to train/test/fine tune the model
Keyword Arguments:
sparsification_weight {int} -- value of the \lambda used in the loss function (default: {5})
threshold {float} -- the value of the cutting threshold to prune neurons any neuron having a score less than this one will be pruned (default: {1e-3})
relaxed_constraints {bool} -- a flag used to relax ReLU constraints {0,1} to continuous range [0-1] (default: {False})
"""
super().__init__(
model_train_obj,
sparsification_weight,
threshold,
relaxed_constraints,
mean_threshold,
)
self.model_bounds = None
self.model_constraints = []
self.model_layers = []
self.batch_size = None
self.solved_mip = False
# saved cvxpy model path
self.model_name = self.model_train.get_model_to_sparsify().name
self.save_dir = os.path.join(
self.model_train.storage_parent_dir,
"model_{}_cvxpy.pt".format(self.model_name),
)
# creating masked model
self.model_train.swap_pytorch_layers()
# saved importance score per layer after doing the sparsification
self.neuron_importance_score = {}
self.compressable_layers_indices = []
def create_bounds(self, initial_bounds, init_layers=True):
"""create upper/lower bounds of the model
Arguments:
initial_bounds {np.array} -- upper and lower bound of input batch
"""
model = self.model_train.get_model_to_sparsify()
model.eval()
self.batch_size = initial_bounds[0].shape[0]
self.model_bounds = bound_propagation(model, initial_bounds)
self._logger.info("Created Model {} Bounds".format(self.model_name))
if (len(self.model_layers) == 0 and init_layers) or (
len(self.model_layers) > 0
and self.model_layers[0].batch_size != self.batch_size
):
self._initialize_model_layers()
self._logger.info("Created Model {} Layers".format(self.model_name))
def sparsify_model(
self,
input_data_flatten,
input_data_labels,
mode=Mode.MASK,
use_cached=True,
start_pruning_from=None,
save_neuron_importance=True,
):
"""computes the neuron importance using solver and sparsifies the model
Arguments:
input_data_flatten {np.array} -- batch of input data to the solver
input_data_labels {list} -- labels of the input batch
Keyword Arguments:
mode {enum} -- masking mode used (default: {Mode.MASK})
use_cached {bool} -- flag when enabled cached solver result from previous run will be used (default: {True})
start_pruning_from {int} -- index of initial layer that will be represented in MIP and pruned from (default: {None})
Returns:
float -- percentage of parameters removed
"""
debug_constraints = False # flag to debug which constraints are causing error
removed_params_percentage = 0
if os.path.isfile(self.save_dir) and use_cached:
self._load_cp_layers()
elif not (self.solved_mip):
prediction_results = test_batch(
self.model_train.get_model_to_sparsify(),
input_data_flatten,
torch.from_numpy(input_data_labels).to(device),
)
self._logger.info(prediction_results.print_batch_probabilties())
self.start_pruning_from = start_pruning_from
self._create_constraints(input_data_flatten)
prob = self._create_cp_loss(
input_data_labels, debug_constraints=debug_constraints
)
if debug_constraints:
self._debug_constraints(input_data_labels)
else:
# now run the solver on the input variables
self._logger.info(
"[Exp] Getting Neuron Importance Score for model {} with sparsification score {}".format(
self.model_name, self.sparsification_weight
)
)
self._log_memory()
objective_value = self._run_solver(prob)
if prob.status in ["infeasible", "unbounded"]:
# Error occured and we need to debug the cvxpy model
self._logger.exception(
"Problem status {} , Now debugging infeasibility".format(
prob.status
)
)
self._debug_constraints(input_data_labels)
return 0
solve_time = prob.solution.attr["solve_time"]
self._logger.info(
"[solver] Solver Objective value {} in {} seconds".format(
objective_value, str(solve_time)
)
)
self.neuron_importance_score = {}
for layer in self.model_layers[:-1]:
if layer.compute_critical_neurons:
self.neuron_importance_score[
layer.layer_indx
] = layer.neuron_importance.value
if save_neuron_importance:
self._save_cp_layers()
self.solved_mip = True
removed_params_percentage = self._filter_critical_neurons(mode)
self._log_memory()
return removed_params_percentage
def _debug_constraints(self, input_data_labels):
prob = self._create_cp_loss(input_data_labels, debug_constraints=True)
for subprob in prob:
self._logger.info("Added Constraint " + subprob[0])
objective_value = self._run_solver(subprob[1])
if subprob[1].status in ["infeasible", "unbounded"]:
import pdb
pdb.set_trace()
self._logger.info("Objective Value " + str(objective_value))
def _run_solver(self, prob):
self._logger.debug("Now calling Cvxpy solver to solve")
objective_value = None
tmp_file_path = os.path.join(
self.model_train.storage_parent_dir, "tmp_file.txt"
)
cp.settings.ERROR = [cp.settings.USER_LIMIT]
cp.settings.SOLUTION_PRESENT = [
cp.settings.OPTIMAL,
cp.settings.OPTIMAL_INACCURATE,
cp.settings.SOLVER_ERROR,
]
with open(tmp_file_path, "w") as tmp_file:
with redirect_stdout(tmp_file):
objective_value = prob.solve(
verbose=self._logger.debug_param,
solver=cp.MOSEK,
mosek_params={"MSK_DPAR_OPTIMIZER_MAX_TIME": 4 * 60 * 60},
)
with open(tmp_file_path, "r") as tmp_file:
solver_logs = tmp_file.read()
self._logger.info("[solver] \n" + solver_logs)
try:
os.remove(tmp_file_path)
except:
pass
return objective_value
def _create_constraints(self, input_data_flatten):
"""creates the constraints associated with input model based on input data
Arguments:
input_data_flatten {np.array} -- input batch to the solver
"""
self._logger.info("Started creating Cvxpy model constraints")
self._propagate_layer_bounds()
# Now getting model constraints
self.model_constraints = []
start_layer_indx = self.model_layers[0].layer_indx
start_layer_indx = (
start_layer_indx
if self.start_pruning_from is None
else self.start_pruning_from
)
for layer_indx, layer in enumerate(self.model_layers):
if layer.layer_indx == start_layer_indx:
for original_layer_indx in range(layer.layer_indx):
input_data_flatten = self.model_train.get_model_to_sparsify()[
original_layer_indx
](input_data_flatten)
input_data_flatten = input_data_flatten.detach().cpu().numpy()
if type(layer) in linear_layers_maps:
input_data_flatten = input_data_flatten.reshape(
input_data_flatten.shape[0], -1
)
else:
input_data_flatten = input_data_flatten.reshape(
input_data_flatten.shape[0], input_data_flatten.shape[1], -1
)
self.model_constraints = layer.get_first_layer_constraints(
input_data_flatten
)
continue
elif layer.layer_indx < start_layer_indx:
continue
self.model_constraints += layer.get_constraints(
self.model_layers[layer_indx - 1]
)
# check constraints
self._check_constraints()
def _check_constraints(self):
"""checking if constraints are disciplined convex
"""
for const in self._get_constraints_list(self.model_constraints):
if not (const.is_dcp()):
self._logger.exception(
"Constraint not disciplined convex " + str(const)
)
def _initialize_model_layers(self):
n_layers = len(self.model_train.get_model_to_sparsify())
activation = None
self.model_layers = []
# creating cvxpy variables
activation = None
activation_name = "None"
update_compressed_layers_indices = len(self.compressable_layers_indices) == 0
for layer_indx, layer in enumerate(self.model_train.model_masked):
if type(layer) in layers_modules_maps:
if layer_indx == n_layers - 1:
is_last_layer = True
else:
is_last_layer = False
if hasattr(layer, "name"):
layer_name = layer.name
else:
layer_name = str(layer) + str(layer_indx)
if hasattr(layer, "input_size"):
layer_input_size = layer.input_size
else:
layer_input_size = self.model_bounds[layer_indx - 1][0].shape
if len(layer_input_size) > 2:
layer_input_size = layer_input_size[-2] * layer_input_size[-1]
else:
layer_input_size = layer_input_size[1]
current_layer_object = layers_modules_maps[type(layer)](
layer_name + "_" + str(layer_indx),
layer_indx,
layer,
self.batch_size,
input_size=layer_input_size,
activation=copy.deepcopy(activation),
is_last_layer=is_last_layer,
compute_critical_neurons=True,
)
if current_layer_object.compute_critical_neurons:
if update_compressed_layers_indices:
self.compressable_layers_indices.append(layer_indx)
if layer_indx in self.neuron_importance_score:
current_layer_object.neuron_importance.value = self.neuron_importance_score[
layer_indx
]
self.model_layers.append(current_layer_object)
self._logger.debug(
"Created layer {} with activation {}".format(
current_layer_object.name, activation_name
)
)
activation = None
activation_name = "None"
elif type(layer) in ignored_layers_map:
if type(layer) in activations_layer_map:
activation = activations_layer_map[type(layer)](
str(layer_indx + 1), relaxed_constraint=self.relaxed_constraints
)
activation_name = activation.name
self._logger.debug("Created activation {}".format(activation_name))
continue
else:
self._logger.exception(
"This model layer is not supported " + str(type(layer))
)
def _propagate_layer_bounds(self):
for layer in self.model_layers:
layer.set_bounds(
self.model_bounds[layer.layer_indx][0],
self.model_bounds[layer.layer_indx][1],
)
# release memory used by np array if the solver was called before
if (
layer.compute_critical_neurons
and layer.neuron_importance.value is not None
):
layer.neuron_importance.value = None
if (
self.start_pruning_from is not None
and layer.layer_indx < self.start_pruning_from
):
layer.disable_compute_neurons()
gc.collect()
def _filter_critical_neurons(self, mode=Mode.MASK):
"""used to filter critical neurons based on solver's computed importance score
Keyword Arguments:
mode {enum} -- masking mode which can be random/mask/critical (default: {Mode.MASK})
Returns:
float -- percentage of parameters removed
"""
self._logger.info("Started removing nodes with {}".format(mode.name))
masked_indices_list = {}
original_model_num_params = sum(
p.numel() for p in self.model_train.get_model_to_sparsify().parameters()
)
sparsified_model_num_params = original_model_num_params
sparsified_model_fc_num_params = original_model_num_params
layer_ids = [layer.layer_indx for layer in self.model_layers[:-1]]
for layer_indx, layer_id in enumerate(layer_ids):
layer_threshold = self.threshold
layer = self.model_layers[layer_indx]
if (
not (layer.compute_critical_neurons)
or layer_id not in self.neuron_importance_score
):
continue
layer_neuron_importance = self.neuron_importance_score[layer_id]
layer = self.model_layers[layer_indx]
mean, std = norm.fit(layer_neuron_importance)
max_score = np.max(layer_neuron_importance)
min_score = np.min(layer_neuron_importance)
neurons_shape = layer_neuron_importance.shape[0]
if self.mean_threshold:
layer_threshold = mean
masked_indices = np.where(layer_neuron_importance < layer_threshold)[0]
if mode == Mode.Random:
# randomize masked indices from only critical neurons with same number of neurons as the non-critical ones
important_neurons_indices = np.where(layer_neuron_importance > 0)[0]
masked_indices = np.random.choice(
important_neurons_indices, size=masked_indices.shape
)
elif mode == Mode.CRITICAL:
# Remove neurons having top score with same percentage as previously removed nodes
if len(masked_indices) > 0:
masked_indices = layer_neuron_importance.argsort()[
-1 * len(masked_indices) :
]
else:
# Mode Mask
self._logger.info(
"[stats] Critical score of neurons from layer {} having score {} +- {} [{} - {}] with threshold {}".format(
layer.name, mean, std, min_score, max_score, layer_threshold
)
)
sparsified_model_num_params -= layer.get_sparsified_param_size(
masked_indices
)
if type(layer) in linear_layers_maps.values():
sparsified_model_fc_num_params -= layer.get_sparsified_param_size(
masked_indices
)
perecentage_removed = len(masked_indices) * 100 / neurons_shape
masked_indices_list[layer.layer_indx] = np.copy(masked_indices)
self._logger.info(
"Removed #{} neurons from layer {} with {}%".format(
str(len(masked_indices)), layer.name, str(perecentage_removed)
)
)
parameters_removed_percentage = 100 - 100 * (
sparsified_model_num_params / original_model_num_params
)
self._logger.info(
"Original Model {} having # {}".format(
self.model_train.model.name, str(original_model_num_params)
)
)
self._logger.info(
"Masked Model {} having # {} with mode {}".format(
self.model_train.model_masked.name,
str(sparsified_model_num_params),
mode.name,
)
)
self._logger.info(
"[Results] Reduced Model {} size with {} %".format(
self.model_train.model.name, str(parameters_removed_percentage)
)
)
parameters_removed_percentage_fc = 100 - 100 * (
sparsified_model_fc_num_params / original_model_num_params
)
self._logger.info(
"[Results] Reduced Model {} 's fully connected params size with {} %".format(
self.model_train.model.name, str(parameters_removed_percentage_fc)
)
)
self.model_train.set_mask_indices(
masked_indices_list,
suffix="_" + mode.name,
save_masking_model=mode == Mode.MASK,
)
return parameters_removed_percentage
def _create_cp_loss(self, input_data_labels, debug_constraints=False):
"""creates the solver's objective function sparsity + lambda softmax
Arguments:
input_data_labels {list} -- labels of the input batch
Returns:
cvxpy.Problem -- returns the cvxpy problem having the objective and the constraints
"""
loss_softmax = (
softmax_loss(self.model_layers[-1].get_layer_out(), input_data_labels)
/ self.batch_size
)
sum_critical_neurons = []
n_neurons = 0
for layer in self.model_layers[:-1]:
if layer.compute_critical_neurons and layer.neuron_importance is not None:
sum_critical_neurons.append(
cp.sum(layer.neuron_importance - 2) / layer.get_n_neurons()
)
n_neurons += layer.get_n_neurons()
if n_neurons > 0:
if len(sum_critical_neurons) == 1:
sparsification_penalty = cp.sum(cp.vstack(sum_critical_neurons))
else:
sparsification_penalty = cp.sum_largest(
cp.vstack(sum_critical_neurons), int(len(sum_critical_neurons) - 1)
)
final_loss = cp.transforms.weighted_sum(
objectives=[loss_softmax, sparsification_penalty],
weights=np.array([self.sparsification_weight, 1]),
)
else:
final_loss = loss_softmax
if debug_constraints:
# return a list of possible problems to know which constraint is the problem
problems = []
for constr_indx, constr in enumerate(self.model_constraints):
problems.append(
(
constr.get_name(),
cp.Problem(
cp.Minimize(0),
self._get_constraints_list(
self.model_constraints[0 : (constr_indx + 1)]
),
),
)
)
return problems
return cp.Problem(
cp.Minimize(final_loss), self._get_constraints_list(self.model_constraints)
)
def _get_constraints_list(self, constraints):
flatten = lambda l: [item for sublist in l for item in sublist]
return flatten([constr.get_constraint() for constr in constraints])
def _save_cp_layers(self):
"""save solver output including layer values, constraints and computed neuron importance score
"""
try:
if len(self.model_layers) == 0 or len(self.neuron_importance_score) == 0:
self._logger.warning(
"CVXPY model {} layers saved are empty".format(self.model_name)
)
torch.save(
{"neuron_importance": self.neuron_importance_score}, self.save_dir,
)
self._logger.info("saved model {} layers ".format(self.model_name))
except Exception as e:
self._logger.exception(str(e))
def _load_cp_layers(self):
"""load the saved neuron importance score and cvxpy layers
"""
try:
checkpoint = torch.load(self.save_dir)
self.neuron_importance_score = checkpoint["neuron_importance"]
self._logger.info(
"Loaded layers and constraints of model {}".format(self.model_name)
)
except Exception as e:
self._logger.exception(str(e))
def reset(self):
"""
used to clean the memory used by the sparsification
"""
self.model_constraints = []
self.model_layers = []
self.solved_mip = False
gc.collect()
if __name__ == "__main__":
# testing our approach
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.optim as optim
from .model_train import ModelTrain
from models import FullyConnectedBaselineModel
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
mnist_train = datasets.MNIST(
"../data", train=True, download=True, transform=transforms.ToTensor()
)
train_size = int(0.9 * len(mnist_train))
val_size = len(mnist_train) - train_size
mnist_train, mnist_val = torch.utils.data.random_split(
mnist_train, [train_size, val_size]
)
mnist_test = datasets.MNIST(
"../data", train=False, download=True, transform=transforms.ToTensor()
)
train_loader = DataLoader(mnist_train, batch_size=32, shuffle=True)
val_loader = DataLoader(mnist_val, batch_size=100, shuffle=False)
test_loader = DataLoader(mnist_test, batch_size=100, shuffle=False)
criterion = nn.CrossEntropyLoss()
model_small = FullyConnectedBaselineModel()
opt = optim.SGD(model_small.parameters(), lr=1e-1)
model = ModelTrain(model_small, criterion, opt, "hamada", debug=True)
model.train(train_loader, num_epochs=5)
for X, y in val_loader:
X, y = X.to(device), y.to(device)
break
sparsify = SparsifyModel(model)
start_indx = 0
end_indx = 10
images = X[start_indx:end_indx]
labels = y[start_indx:end_indx]
initial_bound = ((images).clamp(min=0), (images).clamp(max=1))
sparsify.create_bounds(initial_bound)
sparsify.sparsify_model(
images.flatten().cpu().numpy().reshape(images.shape[0], -1),
labels.cpu().numpy(),
)
model.print_results(train_loader, val_loader, test_loader)