title | booktitle | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Understanding the unstable convergence of gradient descent |
Proceedings of the 39th International Conference on Machine Learning |
Most existing analyses of (stochastic) gradient descent rely on the condition that for |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
ahn22a |
0 |
Understanding the unstable convergence of gradient descent |
247 |
257 |
247-257 |
247 |
false |
Ahn, Kwangjun and Zhang, Jingzhao and Sra, Suvrit |
|
2022-06-28 |
Proceedings of the 39th International Conference on Machine Learning |
162 |
inproceedings |
|