Skip to content

Latest commit

 

History

History
28 lines (20 loc) · 797 Bytes

README.md

File metadata and controls

28 lines (20 loc) · 797 Bytes

ModifiedNB Model

Scikit-learn based implementation of the popular cheminformatics Laplace corrected Naïve Bayes algorithm as described in:

Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases
Nidhi,†, Meir Glick,‡, John W. Davies,‡ and, and Jeremy L. Jenkins*,‡
Journal of Chemical Information and Modeling 2006 46 (3), 1124-1133
DOI: 10.1021/ci060003g

Installation

pip install ModifiedNB

Usage

Works exactly like any other scikit-learn model.

import numpy as np
X = np.random.randint(5, size=(6, 100))
y = np.array([1, 2, 3, 4, 5, 6])

from ModifiedNB import ModifiedNB
clf = ModifiedNB()
clf.fit(X, y)
# generate KNIME/PP like scores
clf._joint_log_likelihood(X)[:,1]