-
Notifications
You must be signed in to change notification settings - Fork 14
/
caffemodel2npy.py
164 lines (143 loc) · 5.9 KB
/
caffemodel2npy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright 2017 Chenxi Liu. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# This code is modified from
# https://github.com/ppwwyyxx/tensorpack/blob/master/tensorpack/utils/loadcaffe.py
# sample usage:
# python caffemodel2npy.py deploy.prototxt
# ../deeplab/ResNet101/init.caffemodel ./model/ResNet101_init.npy
import numpy as np
import pdb
import re
class CaffeLayerProcessor(object):
def __init__(self, net):
self.net = net
self.layer_names = net._layer_names
self.param_dict = {}
self.processors = {
'Convolution': self.proc_conv,
'InnerProduct': self.proc_fc,
'BatchNorm': self.proc_bn,
'Scale': self.proc_scale
}
def process(self):
for idx, layer in enumerate(self.net.layers):
param = layer.blobs
name = self.layer_names[idx]
if 'res05' in name or 'res075' in name:
continue
if layer.type in self.processors:
name_ = self.rename(name)
dic = self.processors[layer.type](idx, name_, param)
self.param_dict.update(dic)
return self.param_dict
def rename(self, caffe_layer_name):
if caffe_layer_name.startswith('scale'):
caffe_layer_name = 'bn' + caffe_layer_name[5:]
NAME_MAP = {'bn_conv1': 'group_1/bn_conv1',
'conv1': 'group_1/conv1',
'fc1_voc12_c0': 'fc1_voc12/conv0',
'fc1_voc12_c1': 'fc1_voc12/conv1',
'fc1_voc12_c2': 'fc1_voc12/conv2',
'fc1_voc12_c3': 'fc1_voc12/conv3'}
if caffe_layer_name in NAME_MAP:
return NAME_MAP[caffe_layer_name]
s = re.search('([a-z]+)([0-9]+)([a-z]+)_', caffe_layer_name)
if s is None:
s = re.search('([a-z]+)([0-9]+)([a-z]+)([0-9]+)_', caffe_layer_name)
layer_block_part1 = s.group(3)
layer_block_part2 = s.group(4)
assert layer_block_part1 in ['a', 'b']
layer_block = 0 if layer_block_part1 == 'a' else int(layer_block_part2)
else:
layer_block = ord(s.group(3)) - ord('a')
layer_type = s.group(1)
layer_group = s.group(2)
layer_branch = int(re.search('_branch([0-9])', caffe_layer_name).group(1))
assert layer_branch in [1, 2]
if layer_branch == 2:
layer_id = re.search('_branch[0-9]([a-z])', caffe_layer_name).group(1)
layer_id = ord(layer_id) - ord('a') + 1
else:
layer_id = 'add'
TYPE_DICT = {'res':'conv', 'bn':'bn'}
layer_type = TYPE_DICT[layer_type]
tf_name = 'group_{}_{}/block_{}/{}'.format(
int(layer_group), layer_block, layer_id, layer_type)
print caffe_layer_name, tf_name
return tf_name
def proc_conv(self, idx, name, param):
assert len(param) <= 2
assert param[0].data.ndim == 4
# caffe: ch_out, ch_in, h, w
W = param[0].data.transpose(2,3,1,0)
if len(param) == 1:
return {name + '/DW': W}
else:
return {name + '/DW': W,
name + '/biases': param[1].data}
def proc_fc(self, idx, name, param):
# TODO caffe has an 'transpose' option for fc/W
assert len(param) == 2
prev_layer_name = self.net.bottom_names[name][0]
prev_layer_output = self.net.blobs[prev_layer_name].data
if prev_layer_output.ndim == 4:
W = param[0].data
# original: outx(CxHxW)
W = W.reshape((-1,) + prev_layer_output.shape[1:]).transpose(2,3,1,0)
# become: (HxWxC)xout
else:
W = param[0].data.transpose()
return {name + '/DW': W.squeeze(),
name + '/biases': param[1].data.squeeze()}
def proc_bn(self, idx, name, param):
# assert param[2].data[0] == 1.0
return {name + '/mean': param[0].data,
name + '/variance': param[1].data,
name + '/factor': param[2].data }
def proc_scale(self, idx, name, param):
# bottom_name = self.net.bottom_names[name][0]
# # find the bn layer before this scaling
# for i, layer in enumerate(self.net.layers):
# if layer.type == 'BatchNorm':
# name2 = self.layer_names[i]
# bottom_name2 = self.net.bottom_names[name2][0]
# if bottom_name2 == bottom_name:
# # scaling and BN share the same bottom, should merge
# return {name2 + '/beta': param[1].data,
# name2 + '/gamma': param[0].data }
return {name + '/beta': param[1].data,
name + '/gamma': param[0].data}
# assume this scaling layer is part of some BN
# raise ValueError()
def load_caffe(model_desc, model_file):
"""
return a dict of params
"""
import caffe
caffe.set_mode_cpu()
net = caffe.Net(model_desc, model_file, caffe.TEST)
param_dict = CaffeLayerProcessor(net).process()
return param_dict
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('model')
parser.add_argument('weights')
parser.add_argument('output')
args = parser.parse_args()
ret = load_caffe(args.model, args.weights)
# pdb.set_trace()
import numpy as np
np.save(args.output, ret)