Skip to content

Latest commit

 

History

History
52 lines (46 loc) · 1.53 KB

README.md

File metadata and controls

52 lines (46 loc) · 1.53 KB

Learnable Graph Convolutional Network and Feature Fusion (LGCN-FF)

Introduction

  • This is an implement of LGCN-FF with PyTorch, which was run on a machine with AMD R9-5900HX CPU, RTX 3080 16G GPU and 32G RAM. It has been accepted by Information Fusion.

Paper

Zhaoliang Chen, Lele Fu, Jie Yao, Wenzhong Guo, Claudia Plant and Shiping Wang. "Learnable Graph Convolutional Network and Feature Fusion for Multi-view Learning." Information Fusion (2023).

Requirements

  • torch: 1.11.0 + cu115
  • numpy: 1.20.1
  • scipy: 1.6.2
  • scikit-learn: 1.1.2

Running Examples

  • For ALOI:
    python ./main.py --dataset-name ALOI --k 15 --epoch-num 180 
    
  • For BBCnews
    python ./main.py --dataset-name BBCnews --k 20 --epoch-num 300
    
  • For BBCsports
    python ./main.py --dataset-name BBCsports --k 14 --epoch-num 170
    
  • For Wikipedia
    python ./main.py --dataset-name Wikipedia --k 20 --epoch-num 150
    
  • For MSRC-v1
    python ./main.py --dataset-name MSRC-v1 --k 10 --epoch-num 130
    
  • For MNIST
    python ./main.py --dataset-name MNIST --k 12 --epoch-num 320
    

Cite

@article{chen2023learnable,
  title = {Learnable Graph Convolutional Network and Feature Fusion for Multi-view Learning},
  author = {Chen, Zhaoliang and Fu, Lele and Yao, Jie and Guo, Wenzhong and Plant, Claudia and Wang, Shiping},
  journal = {Information Fusion},
  year = {2023},
  pages = {109-119},
  volume = {95},
}