-
Notifications
You must be signed in to change notification settings - Fork 194
/
Copy pathsort.py
225 lines (181 loc) · 5.39 KB
/
sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import math
import random
import sys
from binary_heap import BinaryHeap
def insertion_sort(arr):
for j in range(1, len(arr)):
key = arr[j]
i = j - 1
while i >= 0 and arr[i] > key:
arr[i + 1] = arr[i]
i -= 1
arr[i + 1] = key
return arr
def selection_sort(arr):
for i in range(len(arr) - 1):
min_idx = i
for j in range(i + 1, len(arr)):
if arr[j] < arr[min_idx]:
min_idx = j
arr = _swap(arr, i, min_idx)
return arr
def merge_sort(arr):
'''
As described in "Introduction to Algorithms" (CLRS book)
Our MERGE procedure takes time O(n),
where n = r - p + 1 is the number of elements being merged.
merge_sort runs in O(nlogn)
'''
return _merge_sort_helper(arr, 0, len(arr) - 1)
def heap_sort(arr):
'''
This consists of 2 steps:
1. build a min heap, which is O(nlogn)
2. extract all n elements of the heap, which is O(nlogn)
Overall, this takes O(nlogn)
'''
heap = BinaryHeap(arr)
result = []
while not heap.is_empty():
result.append(heap.extract_min())
return result
def quick_sort(arr):
'''
As described in "Introduction to Algorithms" (CLRS book)
'''
return _quick_sort_helper(arr, 0, len(arr) - 1)
def counting_sort(arr, upper=None, lower=0):
'''
As described in "Introduction to Algorithms" (CLRS book)
Only works for arrays whose values are within a range (min, max)
O(n)
'''
if len(arr) <= 1:
return arr
if not upper:
lower, upper = _find_bounds(arr)
c = [0 for _ in range(lower, upper + 1)]
for value in arr:
c[value - lower] += 1
for i in range(1, upper - lower + 1):
c[i] += c[i - 1]
b = arr[:]
for i in range(len(arr) - 1, -1, -1):
b[c[arr[i] - lower] - 1] = arr[i]
c[arr[i] - lower] -= 1
return b
def radix_sort(arr, d):
'''
As described in "Introduction to Algorithms" (CLRS book)
the following procedure assumes that each element inthe n-element array A
has d digits, where digit 1 is the lowest-order digit and digit d is the
highest-order digit.
We use counting sort as a stable subroutine for radix sort.
'''
i = 10
for i in range(1, d + 1):
arr = _counting_sort_on_digit(arr, i)
return arr
def bucket_sort(arr, buckets=10):
'''
As described in "Introduction to Algorithms" (CLRS book)
Bucket sort runs in O(n) when input is drawn from a uniform distribution.
The idea of bucket sort is to divide the interval [0, 1) into n equal-sized
buckets, and then distribute the n input numbers into the buckets.
Since the inputs are uniformly distributed over [0, 1), we don't expect
many numbers to fall into each bucket.
We then simply sort the numbers in each bucket and go through the buckets
in order, listing the elements in each.
'''
b = [[] for _ in range(buckets)]
for value in arr:
b[int(value * buckets)].append(value)
result = []
for i in range(buckets):
b[i] = insertion_sort(b[i])
result.extend(b[i])
return result
def _swap(arr, i, j):
temp = arr[i]
arr[i] = arr[j]
arr[j] = temp
return arr
def _partition(arr, p, r):
x = arr[r]
i = p - 1
for j in range(p, r):
if arr[j] <= x:
i += 1
arr = _swap(arr, i, j)
arr = _swap(arr, i + 1, r)
return i + 1, arr
def _quick_sort_helper(arr, p, r):
if p < r:
q, arr = _partition(arr, p, r)
arr = _quick_sort_helper(arr, p, q - 1)
arr = _quick_sort_helper(arr, q + 1, r)
return arr
def _merge(arr, p, q, r):
left = arr[p: q + 1] + [float('inf')]
right = arr[q + 1: r + 1] + [float('inf')]
i = j = 0
for k in range(p, r + 1):
if left[i] < right[j]:
arr[k] = left[i]
i += 1
else:
arr[k] = right[j]
j += 1
return arr
def _merge_sort_helper(arr, p, r):
if p < r:
q = (p + r) // 2
arr = _merge_sort_helper(arr, p, q)
arr = _merge_sort_helper(arr, q + 1, r)
arr = _merge(arr, p, q, r)
return arr
def _find_bounds(arr):
lower = float('inf')
upper = float('-inf')
for value in arr:
if value < lower:
lower = value
if value > upper:
upper = value
return lower, upper
def _counting_sort_on_digit(arr, digit):
div = 10 ** (digit - 1)
c = [0 for _ in range(10)]
for value in arr:
digit = (value // div) % 10
c[digit] += 1
for i in range(1, 10):
c[i] += c[i - 1]
b = arr[:]
for i in range(len(arr) - 1, -1, -1):
digit = (arr[i] // div) % 10
b[c[digit] - 1] = arr[i]
c[digit] -= 1
return b
arrs = [[1, -2, 2, 30, 2, 10, 2, 2, 1],
[],
[1],
[1, 3, -1],
[2, 3, 2, 5, 6, 5],
[10],
[100, 123, 880, 231, 239, 293, 591, 942, 704, 101, 809]]
def test():
for arr in arrs:
print(insertion_sort(arr))
print(selection_sort(arr))
print(merge_sort(arr))
print(heap_sort(arr))
print(quick_sort(arr))
print(counting_sort(arr))
print(radix_sort(arrs[4], 3))
print(radix_sort(arrs[6], 1))
arr = [random.random() for _ in range(100)]
a = bucket_sort(arr, 12)
for i in range(1, len(a)):
assert a[i - 1] <= a[i]
test()