-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathsummarize_results.py
executable file
·244 lines (184 loc) · 9.39 KB
/
summarize_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
_EPSILON = 1e-08
import numpy as np
import pandas as pd
import tensorflow as tf
import random
import os
# import sys
from termcolor import colored
from tensorflow.contrib.layers import fully_connected as FC_Net
from sklearn.metrics import brier_score_loss
from sklearn.model_selection import train_test_split
import import_data as impt
import utils_network as utils
from class_DeepHit import Model_DeepHit
from utils_eval import c_index, brier_score, weighted_c_index, weighted_brier_score
def load_logging(filename):
data = dict()
with open(filename) as f:
def is_float(input):
try:
num = float(input)
except ValueError:
return False
return True
for line in f.readlines():
if ':' in line:
key,value = line.strip().split(':', 1)
if value.isdigit():
data[key] = int(value)
elif is_float(value):
data[key] = float(value)
elif value == 'None':
data[key] = None
else:
data[key] = value
else:
pass # deal with bad lines of text here
return data
##### MAIN SETTING
OUT_ITERATION = 5
data_mode = 'SYNTHETIC' #METABRIC, SYNTHETIC
seed = 1234
EVAL_TIMES = [12, 24, 36] # evalution times (for C-index and Brier-Score)
##### IMPORT DATASET
'''
num_Category = max event/censoring time * 1.2 (to make enough time horizon)
num_Event = number of evetns i.e. len(np.unique(label))-1
max_length = maximum number of measurements
x_dim = data dimension including delta (num_features)
mask1, mask2 = used for cause-specific network (FCNet structure)
'''
if data_mode == 'SYNTHETIC':
(x_dim), (data, time, label), (mask1, mask2) = impt.import_dataset_SYNTHETIC(norm_mode = 'standard')
EVAL_TIMES = [12, 24, 36]
elif data_mode == 'METABRIC':
(x_dim), (data, time, label), (mask1, mask2) = impt.import_dataset_METABRIC(norm_mode = 'standard')
EVAL_TIMES = [144, 288, 432]
else:
print('ERROR: DATA_MODE NOT FOUND !!!')
_, num_Event, num_Category = np.shape(mask1) # dim of mask1: [subj, Num_Event, Num_Category]
in_path = data_mode + '/results/'
if not os.path.exists(in_path):
os.makedirs(in_path)
FINAL1 = np.zeros([num_Event, len(EVAL_TIMES), OUT_ITERATION])
FINAL2 = np.zeros([num_Event, len(EVAL_TIMES), OUT_ITERATION])
for out_itr in range(OUT_ITERATION):
in_hypfile = in_path + '/itr_' + str(out_itr) + '/hyperparameters_log.txt'
in_parser = load_logging(in_hypfile)
##### HYPER-PARAMETERS
mb_size = in_parser['mb_size']
iteration = in_parser['iteration']
keep_prob = in_parser['keep_prob']
lr_train = in_parser['lr_train']
h_dim_shared = in_parser['h_dim_shared']
h_dim_CS = in_parser['h_dim_CS']
num_layers_shared = in_parser['num_layers_shared']
num_layers_CS = in_parser['num_layers_CS']
if in_parser['active_fn'] == 'relu':
active_fn = tf.nn.relu
elif in_parser['active_fn'] == 'elu':
active_fn = tf.nn.elu
elif in_parser['active_fn'] == 'tanh':
active_fn = tf.nn.tanh
else:
print('Error!')
initial_W = tf.contrib.layers.xavier_initializer()
alpha = in_parser['alpha'] #for log-likelihood loss
beta = in_parser['beta'] #for ranking loss
gamma = in_parser['gamma'] #for RNN-prediction loss
parameter_name = 'a' + str('%02.0f' %(10*alpha)) + 'b' + str('%02.0f' %(10*beta)) + 'c' + str('%02.0f' %(10*gamma))
##### MAKE DICTIONARIES
# INPUT DIMENSIONS
input_dims = { 'x_dim' : x_dim,
'num_Event' : num_Event,
'num_Category' : num_Category}
# NETWORK HYPER-PARMETERS
network_settings = { 'h_dim_shared' : h_dim_shared,
'h_dim_CS' : h_dim_CS,
'num_layers_shared' : num_layers_shared,
'num_layers_CS' : num_layers_CS,
'active_fn' : active_fn,
'initial_W' : initial_W }
# for out_itr in range(OUT_ITERATION):
print ('ITR: ' + str(out_itr+1) + ' DATA MODE: ' + data_mode + ' (a:' + str(alpha) + ' b:' + str(beta) + ' c:' + str(gamma) + ')' )
##### CREATE DEEPFHT NETWORK
tf.reset_default_graph()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
model = Model_DeepHit(sess, "DeepHit", input_dims, network_settings)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
### TRAINING-TESTING SPLIT
(tr_data,te_data, tr_time,te_time, tr_label,te_label,
tr_mask1,te_mask1, tr_mask2,te_mask2) = train_test_split(data, time, label, mask1, mask2, test_size=0.20, random_state=seed)
(tr_data,va_data, tr_time,va_time, tr_label,va_label,
tr_mask1,va_mask1, tr_mask2,va_mask2) = train_test_split(tr_data, tr_time, tr_label, tr_mask1, tr_mask2, test_size=0.20, random_state=seed)
##### PREDICTION & EVALUATION
saver.restore(sess, in_path + '/itr_' + str(out_itr) + '/models/model_itr_' + str(out_itr))
### PREDICTION
pred = model.predict(te_data)
### EVALUATION
result1, result2 = np.zeros([num_Event, len(EVAL_TIMES)]), np.zeros([num_Event, len(EVAL_TIMES)])
for t, t_time in enumerate(EVAL_TIMES):
eval_horizon = int(t_time)
if eval_horizon >= num_Category:
print( 'ERROR: evaluation horizon is out of range')
result1[:, t] = result2[:, t] = -1
else:
# calculate F(t | x, Y, t >= t_M) = \sum_{t_M <= \tau < t} P(\tau | x, Y, \tau > t_M)
risk = np.sum(pred[:,:,:(eval_horizon+1)], axis=2) #risk score until EVAL_TIMES
for k in range(num_Event):
# result1[k, t] = c_index(risk[:,k], te_time, (te_label[:,0] == k+1).astype(float), eval_horizon) #-1 for no event (not comparable)
# result2[k, t] = brier_score(risk[:,k], te_time, (te_label[:,0] == k+1).astype(float), eval_horizon) #-1 for no event (not comparable)
result1[k, t] = weighted_c_index(tr_time, (tr_label[:,0] == k+1).astype(int), risk[:,k], te_time, (te_label[:,0] == k+1).astype(int), eval_horizon) #-1 for no event (not comparable)
result2[k, t] = weighted_brier_score(tr_time, (tr_label[:,0] == k+1).astype(int), risk[:,k], te_time, (te_label[:,0] == k+1).astype(int), eval_horizon) #-1 for no event (not comparable)
FINAL1[:, :, out_itr] = result1
FINAL2[:, :, out_itr] = result2
### SAVE RESULTS
row_header = []
for t in range(num_Event):
row_header.append('Event_' + str(t+1))
col_header1 = []
col_header2 = []
for t in EVAL_TIMES:
col_header1.append(str(t) + 'yr c_index')
col_header2.append(str(t) + 'yr B_score')
# c-index result
df1 = pd.DataFrame(result1, index = row_header, columns=col_header1)
df1.to_csv(in_path + '/result_CINDEX_itr' + str(out_itr) + '.csv')
# brier-score result
df2 = pd.DataFrame(result2, index = row_header, columns=col_header2)
df2.to_csv(in_path + '/result_BRIER_itr' + str(out_itr) + '.csv')
### PRINT RESULTS
print('========================================================')
print('ITR: ' + str(out_itr+1) + ' DATA MODE: ' + data_mode + ' (a:' + str(alpha) + ' b:' + str(beta) + ' c:' + str(gamma) + ')' )
print('SharedNet Parameters: ' + 'h_dim_shared = '+str(h_dim_shared) + ' num_layers_shared = '+str(num_layers_shared) + 'Non-Linearity: ' + str(active_fn))
print('CSNet Parameters: ' + 'h_dim_CS = '+str(h_dim_CS) + ' num_layers_CS = '+str(num_layers_CS) + 'Non-Linearity: ' + str(active_fn))
print('--------------------------------------------------------')
print('- C-INDEX: ')
print(df1)
print('--------------------------------------------------------')
print('- BRIER-SCORE: ')
print(df2)
print('========================================================')
### FINAL MEAN/STD
# c-index result
df1_mean = pd.DataFrame(np.mean(FINAL1, axis=2), index = row_header, columns=col_header1)
df1_std = pd.DataFrame(np.std(FINAL1, axis=2), index = row_header, columns=col_header1)
df1_mean.to_csv(in_path + '/result_CINDEX_FINAL_MEAN.csv')
df1_std.to_csv(in_path + '/result_CINDEX_FINAL_STD.csv')
# brier-score result
df2_mean = pd.DataFrame(np.mean(FINAL2, axis=2), index = row_header, columns=col_header2)
df2_std = pd.DataFrame(np.std(FINAL2, axis=2), index = row_header, columns=col_header2)
df2_mean.to_csv(in_path + '/result_BRIER_FINAL_MEAN.csv')
df2_std.to_csv(in_path + '/result_BRIER_FINAL_STD.csv')
### PRINT RESULTS
print('========================================================')
print('- FINAL C-INDEX: ')
print(df1_mean)
print('--------------------------------------------------------')
print('- FINAL BRIER-SCORE: ')
print(df2_mean)
print('========================================================')