forked from vincentjs/oshaughnessey
-
Notifications
You must be signed in to change notification settings - Fork 1
/
oshaugh.py
219 lines (180 loc) · 7.09 KB
/
oshaugh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Original Work: James O'Shaughnessey, "What Works on Wall Street"
# MATLAB Script: Justin Riley, 2012-2014
# Python 3.x Script: Vincent San Miguel, July 2016
#
# Replicates the concept of Trending Value. Each company is scored on six
# performance metrics:
# (1) P/E ratio (Price to Earnings)
# (2) P/S ratio (Price to Sales)
# (3) P/B ratio (Price to Book)
# (4) P/FCF ratio (Price to Free Cash Flow)
# (5) EV/EBITDA ratio (Enterprise Value to Earnings Before Interest, Taxes,
# Depreciation, and Amortization)
# (6) Shareholder Yield (Dividend Yield + Buyback Yield)
#
# O'Shaughnessey individually scores these on a scale of 0-100 (where 100
# is the best). The scores are summed (0-600) to represent the stock's
# intrinsic value relative to the market. A perfect score of 600 represents
# a highly undervalued stock.
#
# Post-processing is done to arrange stocks in descending order; the top 10%
# is marked for further sorting. The list is rearranged by 6 month price
# momentum.
#
# The top 25 stocks are bought in equal amounts and held for 1 year.
# Historically, this has averaged a return of 21% per year.
#
# Some equities do not report certain metrics (e.g. mutual funds and EV/EBITDA).
# These values are set to either 0 or 100,000 depending on the metric.
#
# See LICENSE.
from sys import stdout
from Stock import Stock
import Scraper
import Rankings
import Fixer
import Writer
# Scrape data from FINVIZ. Certain presets have been established (see direct
# link for more details)
url = 'http://finviz.com/screener.ashx?v=152&f=cap_smallover&' + \
'ft=4&c=0,1,2,6,7,10,11,13,14,45,65'
html = Scraper.importHtml(url)
# Parse the HTML for the number of pages from which we'll pull data
nPages = -1
for line in html:
if line[0:40] == '<option selected="selected" value=1>Page':
# Find indices
b1 = line.index('/') + 1
b2 = b1 + line[b1:].index('<')
# Number of pages containing stock data
nPages = int(line[b1:b2])
break
# Create a database containing all stocks
stocks = []
# Parse data from table on the first page of stocks and store in the database
Scraper.importFinvizPage(html, stocks)
# The first page of stocks (20 stocks) has been imported. Now import the
# rest of them
for i in range(1, nPages + 1):
# Print dynamic progress message
print('Importing FINVIZ metrics from page ' + str(i) + ' of ' + \
str(nPages) + '...', file=stdout, flush=True)
# Scrape data as before
url = 'http://finviz.com/screener.ashx?v=152&f=cap_smallover&ft=4&r=' + \
str(i*20+1) + '&c=0,1,2,6,7,10,11,13,14,45,65'
html = Scraper.importHtml(url)
# Import stock metrics from page
Scraper.importFinvizPage(html, stocks)
# FINVIZ stock metrics successfully imported
print('\n')
# Grab EV/EBITDA metrics from Yahoo! Finance
nStocks = len(stocks)
for i in range(nStocks):
# Print dynamic progress message
print('Importing Key Statistics for ' + stocks[i].tick +
' (' + str(i) + '/' + str(nStocks - 1) + ') from Yahoo! Finance...', \
file=stdout, flush=True)
# Scrape data from Yahoo! Finance
url = 'http://finance.yahoo.com/q/ks?s=' + stocks[i].tick + '+Key+Statistics'
html = Scraper.importHtml(url)
# Parse data
for line in html:
# Check no value
if 'There is no Key Statistics' in line or \
'Get Quotes Results for' in line or \
'Changed Ticker Symbol' in line or \
'</html>' in line:
# Non-financial file (e.g. mutual fund) or
# Ticker not located or
# End of html page
stocks[i].evebitda = 1000
break
elif 'Enterprise Value/EBITDA' in line:
# Line contains EV/EBITDA data
evebitda = Scraper.readYahooEVEBITDA(line)
stocks[i].evebitda = evebitda
break
# Yahoo! Finance EV/EBITDA successfully imported
print('\n')
# Grab BBY metrics from Yahoo! Finance
for i in range(nStocks):
# Print dynamic progress message
print('Importing Cash Flow for ' + stocks[i].tick +
' (' + str(i) + '/' + str(nStocks - 1) + ') from Yahoo! Finance...', \
file=stdout, flush=True)
# Scrape data from Yahoo! Finance
url = 'http://finance.yahoo.com/q/cf?s=' + stocks[i].tick + '&ql=1'
html = Scraper.importHtml(url)
# Parse data
totalBuysAndSells = 0
for line in html:
# Check no value
if 'There is no Cash Flow' in line or \
'Get Quotes Results for' in line or \
'Changed Ticker Symbol' in line or \
'</html>' in line:
# Non-financial file (e.g. mutual fund) or
# Ticker not located or
# End of html page
break
elif 'Sale Purchase of Stock' in line:
# Line contains Sale/Purchase of Stock information
totalBuysAndSells = Scraper.readYahooBBY(line)
break
# Calculate BBY as a percentage of current market cap
bby = round(-totalBuysAndSells / stocks[i].mktcap * 100, 2)
stocks[i].bby = bby
# Yahoo! Finance BBY successfully imported
# All data imported
print('\n')
print('Fixing screener errors...')
stocks = Fixer.fixBrokenMetrics(stocks)
print('Ranking stocks...')
# Calculate shareholder Yield
for i in range(nStocks):
stocks[i].shy = stocks[i].div + stocks[i].bby
# Time to rank! Lowest value gets 100
rankPE = 100 * (1 - Rankings.rankByValue([o.pe for o in stocks]) / nStocks)
rankPS = 100 * (1 - Rankings.rankByValue([o.ps for o in stocks]) / nStocks)
rankPB = 100 * (1 - Rankings.rankByValue([o.pb for o in stocks]) / nStocks)
rankPFCF = 100 * (1 - Rankings.rankByValue([o.pfcf for o in stocks]) / nStocks)
rankEVEBITDA = 100 * (1 - Rankings.rankByValue([o.evebitda for o in stocks]) / nStocks)
# Shareholder yield ranked with highest getting 100
rankSHY = 100 * (Rankings.rankByValue([o.shy for o in stocks]) / nStocks)
# Rank total stock valuation
rankStock = rankPE + rankPS + rankPB + rankPFCF + rankEVEBITDA + rankSHY
# Rank 'em
rankOverall = Rankings.rankByValue(rankStock)
# Calculate Value Composite - higher the better
valueComposite = 100 * rankOverall / len(rankStock)
# Reverse indices - lower index -> better score
rankOverall = [len(rankStock) - 1 - x for x in rankOverall]
# Assign to stocks
for i in range(nStocks):
stocks[i].rank = rankOverall[i]
stocks[i].vc = round(valueComposite[i], 2)
print('Sorting stocks...')
# Sort all stocks by normalized rank
stocks = [x for (y, x) in sorted(zip(rankOverall, stocks))]
# Sort top decile by momentum factor
dec = int(nStocks / 10)
topDecile = []
# Store temporary momentums from top decile
moms = [o.mom for o in stocks[:dec]]
for i in range(dec):
# Get index of top momentum performer in top decile
topMomInd = moms.index(max(moms))
# Sort
topDecile.append(stocks[topMomInd])
# Remove top momentum performer from further consideration
moms[topMomInd] = -100
print('Saving stocks...')
# Save momentum-weighted top decile
csvpath = 'top.csv'
Writer.writeCSV(csvpath, topDecile)
# Save results to .csv
csvpath = 'stocks.csv'
Writer.writeCSV(csvpath, stocks)
print('\n')
print('Complete.')
print('Results saved to ' + csvpath)