-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlinalg.cu
337 lines (286 loc) · 8.75 KB
/
linalg.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/**
* @author Christoph Schaefer cm.schaefer@gmail.com
*
* @section LICENSE
* Copyright (c) 2019 Christoph Schaefer
*
* This file is part of miluphcuda.
*
* miluphcuda is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* miluphcuda is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with miluphcuda. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "timeintegration.h"
#include "miluph.h"
#include "parameter.h"
#include "linalg.h"
__device__ void copy_matrix(double src[DIM][DIM], double dst[DIM][DIM])
{
int i, j;
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
dst[i][j] = src[i][j];
}
}
}
__device__ void transpose_matrix(double m[DIM][DIM])
{
int i, j;
double mt[DIM][DIM];
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
mt[j][i] = m[i][j];
}
}
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
m[i][j] = mt[i][j];
}
}
}
// calculates C = A B and stores in C
__device__ void multiply_matrix(double A[DIM][DIM], double B[DIM][DIM], double C[DIM][DIM])
{
int i, j, k;
double vprime[DIM][DIM];
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
vprime[i][j] = 0.0;
}
}
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
for (k = 0; k < DIM; k++) {
vprime[i][j] += A[i][k]*B[k][j];
}
}
}
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
C[i][j] = vprime[i][j];
}
}
}
__device__ void identity_matrix(double A[DIM][DIM])
{
int i, j;
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
A[i][j] = 0.0;
}
A[i][i] = 1.0;
}
}
// returns the indices of the greatest non-diagonal element of M
__device__ int max_Matrix(double M[DIM][DIM], int *e, int *f, double *elmax)
{
int i, j;
double max = 0.0;
int ierror = 1;
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
if (i == j)
continue;
if (fabs(M[i][j]) >= max) {
max = fabs(M[i][j]);
*e = i;
*f = j;
ierror = 0;
}
}
}
*elmax = max;
return ierror;
}
/*
* help function for the jacobi method
* returns: M' = A^T M A, and A_ef = s = -A_ef, A_ee = A_ff = c
*/
__device__ void rotate_matrix(volatile double m[DIM][DIM], volatile double c, volatile double s, volatile int e,
volatile int f)
{
int i, j;
volatile double mprime[DIM][DIM];
/* first copy the matrix */
for (i = 0; i < DIM; i++)
for (j = 0; j < DIM; j++)
mprime[i][j] = m[i][j];
/* now the elements that change */
mprime[e][e] = c*c*m[e][e] + s*s*m[f][f] - 2*s*c*m[e][f];
mprime[f][f] = c*c*m[f][f] + s*s*m[e][e] + 2*s*c*m[e][f];
mprime[e][f] = (c*c-s*s)*m[e][f] + s*c*(m[e][e]-m[f][f]);
mprime[f][e] = mprime[e][f];
/* the other elements in columns and rows e, f*/
/* actually, this is only one in 3D and 0 in 2D */
for (i = 0; i < DIM; i++) {
if (i == f || i == e)
continue;
mprime[e][i] = c*m[i][e] - s*m[i][f];
mprime[i][e] = mprime[e][i];
mprime[f][i] = c*m[i][f] + s*m[i][e];
mprime[i][f] = mprime[f][i];
}
/* set the matrix to the rotated one */
for (i = 0; i < DIM; i++)
for (j = 0; j < DIM; j++)
m[i][j] = mprime[i][j];
}
/*
* computes all eigenvalues and eigenvectors of the _symmetric_ matrix M
* using the jacobi method and stores them in eigenvals and the eigenvecs as columns
* in the transformation matrix v
*
* returns the number of iterations
*/
__device__ int calculate_all_eigenvalues(double M[DIM][DIM], double eigenvalues[DIM], double v[DIM][DIM]) {
int i, j;
double diagM[DIM][DIM] = {0.0, };
double c, s, t, thta;
double A[DIM][DIM];
double vtmp[DIM][DIM];
int e, f;
int error;
double max = -1e300;
int nit = 0;
i = j = e = f = 0;
c = s = t = thta = 0.0;
error = 0;
#define EPS_JACOBI 1e-10
for (i = 0; i < DIM; i++) {
for (j = 0; j < DIM; j++) {
diagM[i][j] = M[i][j];
v[i][j] = 0.0;
}
v[i][i] = 1.0;
}
do {
nit++;
error = max_Matrix(diagM, &e, &f, &max);
if (error) {
printf("No maximum element found.\n");
}
if (max > 0) {
// rotate matrix
thta = (diagM[f][f] - diagM[e][e])/(2*diagM[e][f]);
if (thta < 0)
t = -1./(fabs(thta) + sqrt(thta*thta+1));
else
t = 1./(fabs(thta) + sqrt(thta*thta+1));
// the elements of the rotation matrix
c = 1./(sqrt(t*t+1));
s = t*c;
// do diagM' = A^T diagM A
rotate_matrix(diagM, c, s, e, f);
identity_matrix(A);
A[e][e] = c;
A[f][f] = c;
A[e][f] = -s;
A[f][e] = s;
// calculate the eigenvectors
multiply_matrix(v, A, vtmp);
copy_matrix(vtmp, v);
}
} while (max > EPS_JACOBI);
for (i = 0; i < DIM; i++) {
eigenvalues[i] = diagM[i][i];
}
return nit;
}
/*
* computes the eigenvalues of the _symmetric_ matrix M
* using the jacobi method
* returns the greatest eigenvalue
*/
__device__ double calculateMaxEigenvalue(double M[DIM][DIM]) {
int i, j;
double diagM[DIM][DIM] = {0.0, };
double c, s, t, thta;
int e, f;
int error;
double max;
double max_ev;
int nit = 0;
i = j = e = f = 0;
c = s = t = thta = 0.0;
max = max_ev = 0;
error = 0;
#define EPS_JACOBI 1e-10
for (i = 0; i < DIM; i++)
for (j = 0; j < DIM; j++)
diagM[i][j] = M[i][j];
do {
nit++;
error = max_Matrix(diagM, &e, &f, &max);
if (error) {
printf("No maximum element found.\n");
}
if (max > 0) {
// rotate matrix
thta = (diagM[f][f] - diagM[e][e])/(2*diagM[e][f]);
if (thta < 0)
t = -1./(fabs(thta) + sqrt(thta*thta+1));
else
t = 1./(fabs(thta) + sqrt(thta*thta+1));
// the elements of the rotation matrix
c = 1./(sqrt(t*t+1));
s = t*c;
// do diagM' = A^T diagM A
rotate_matrix(diagM, c, s, e, f);
}
} while (max > EPS_JACOBI || nit < 5);
max_ev = diagM[0][0];
for (i = 1; i < DIM; i++) {
if (diagM[i][i] > max_ev) {
max_ev = diagM[i][i];
}
}
return max_ev;
}
__device__ double det2x2(double a, double b, double c, double d) {
return a*d-c*b;
}
__device__ int invertMatrix(double *m, double *inverted) {
double det;
#if (DIM == 2)
double a, b, c, d;
a = m[0*DIM+0];
b = m[0*DIM+1];
c = m[1*DIM+0];
d = m[1*DIM+1];
det = det2x2(a,b,c,d);
// if (det < 1e-8) return -1;
// if (det < 1e-10) det = 1e-10;
det = 1./det;
inverted[0*DIM+0] = det*d;
inverted[0*DIM+1] = -det*b;
inverted[1*DIM+0] = -det*c;
inverted[1*DIM+1] = det*a;
#elif (DIM == 3)
det = m[0 * DIM + 0] * (m[1 * DIM + 1] * m[2 * DIM + 2] - m[2 * DIM + 1] * m[1 * DIM + 2])
- m[0 * DIM + 1] * (m[1 * DIM + 0] * m[2 * DIM + 2] - m[1 * DIM + 2] * m[2 * DIM + 0])
+ m[0 * DIM + 2] * (m[1 * DIM + 0] * m[2 * DIM + 1] - m[1 * DIM + 1] * m[2 * DIM + 0]);
// inverse determinante
if (det < 1e-8) return -1;
det = 1.0 / det;
inverted[0*DIM+0] = (m[1*DIM+ 1] * m[2*DIM+ 2] - m[2*DIM+ 1] * m[1*DIM+ 2]) * det;
inverted[0*DIM+1] = (m[0*DIM+ 2] * m[2*DIM+ 1] - m[0*DIM+ 1] * m[2*DIM+ 2]) * det;
inverted[0*DIM+2] = (m[0*DIM+ 1] * m[1*DIM+ 2] - m[0*DIM+ 2] * m[1*DIM+ 1]) * det;
inverted[1*DIM+0] = (m[1*DIM+ 2] * m[2*DIM+ 0] - m[1*DIM+ 0] * m[2*DIM+ 2]) * det;
inverted[1*DIM+1] = (m[0*DIM+ 0] * m[2*DIM+ 2] - m[0*DIM+ 2] * m[2*DIM+ 0]) * det;
inverted[1*DIM+2] = (m[1*DIM+ 0] * m[0*DIM+ 2] - m[0*DIM+ 0] * m[1*DIM+ 2]) * det;
inverted[2*DIM+0] = (m[1*DIM+ 0] * m[2*DIM+ 1] - m[2*DIM+ 0] * m[1*DIM+ 1]) * det;
inverted[2*DIM+1] = (m[2*DIM+ 0] * m[0*DIM+ 1] - m[0*DIM+ 0] * m[2*DIM+ 1]) * det;
inverted[2*DIM+2] = (m[0*DIM+ 0] * m[1*DIM+ 1] - m[1*DIM+ 0] * m[0*DIM+ 1]) * det;
#endif
return 1;
}