forked from XiaobingSuper/inference
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.py
91 lines (73 loc) · 3.41 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright 2020 The MLPerf Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import argparse
import mlperf_loadgen as lg
import subprocess
import os
from pathlib import Path
MLPERF_CONF = Path(os.path.dirname(os.path.realpath(__file__))) / "../../mlperf.conf"
MLPERF_CONF = MLPERF_CONF.resolve()
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--backend", choices=["pytorch"], default="pytorch", help="Backend")
parser.add_argument("--scenario", choices=["SingleStream", "Offline", "Server"], default="Offline", help="Scenario")
parser.add_argument("--accuracy", action="store_true", help="enable accuracy pass")
parser.add_argument("--mlperf_conf", default=str(MLPERF_CONF), help="mlperf rules config")
parser.add_argument("--user_conf", default="user.conf", help="user config for user LoadGen settings such as target QPS")
parser.add_argument("--pytorch_config_toml", default="pytorch/configs/rnnt.toml")
parser.add_argument("--pytorch_checkpoint", default="pytorch/work_dir/rnnt.pt")
parser.add_argument("--dataset_dir", required=True)
parser.add_argument("--manifest", required=True)
parser.add_argument("--perf_count", type=int, default=None)
parser.add_argument("--log_dir", required=True)
args = parser.parse_args()
return args
scenario_map = {
"SingleStream": lg.TestScenario.SingleStream,
"Offline": lg.TestScenario.Offline,
"Server": lg.TestScenario.Server,
}
def main():
args = get_args()
if args.backend == "pytorch":
from pytorch_SUT import PytorchSUT
sut = PytorchSUT(args.pytorch_config_toml, args.pytorch_checkpoint,
args.dataset_dir, args.manifest, args.perf_count)
else:
raise ValueError("Unknown backend: {:}".format(args.backend))
settings = lg.TestSettings()
settings.scenario = scenario_map[args.scenario]
settings.FromConfig(args.mlperf_conf, "rnnt", args.scenario)
settings.FromConfig(args.user_conf, "rnnt", args.scenario)
if args.accuracy:
settings.mode = lg.TestMode.AccuracyOnly
else:
settings.mode = lg.TestMode.PerformanceOnly
log_path = args.log_dir
os.makedirs(log_path, exist_ok=True)
log_output_settings = lg.LogOutputSettings()
log_output_settings.outdir = log_path
log_output_settings.copy_summary_to_stdout = True
log_settings = lg.LogSettings()
log_settings.log_output = log_output_settings
print("Running Loadgen test...")
lg.StartTestWithLogSettings(sut.sut, sut.qsl.qsl, settings, log_settings)
if args.accuracy:
cmd = f"python3 accuracy_eval.py --log_dir {log_path} --dataset_dir {args.dataset_dir} --manifest {args.manifest}"
print(f"Running accuracy script: {cmd}")
subprocess.check_call(cmd, shell=True)
print("Done!")
if __name__ == "__main__":
main()