forked from XiaobingSuper/inference
-
Notifications
You must be signed in to change notification settings - Fork 1
/
accuracy-brats.py
156 lines (134 loc) · 6.75 KB
/
accuracy-brats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import numpy as np
import os
import pickle
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "nnUnet"))
from multiprocessing import Pool
from nnunet.evaluation.region_based_evaluation import evaluate_regions, get_brats_regions
from nnunet.inference.segmentation_export import save_segmentation_nifti_from_softmax
dtype_map = {
"int8": np.int8,
"int16": np.int16,
"int32": np.int32,
"int64": np.int64,
"float16": np.float16,
"float32": np.float32,
"float64": np.float64
}
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--log_file", default="build/logs/mlperf_log_accuracy.json", help="Path to accuracy log json file")
parser.add_argument("--output_dtype", default="float16", choices=dtype_map.keys(), help="Output data type")
parser.add_argument("--preprocessed_data_dir", default="build/preprocessed_data", help="Path to the directory containing preprocessed data")
parser.add_argument("--postprocessed_data_dir", default="build/postprocessed_data", help="Path to the directory containing postprocessed data")
parser.add_argument("--label_data_dir", default="build/raw_data/nnUNet_raw_data/Task043_BraTS2019/labelsTr",
help="Path to the directory containing ground truth labels")
parser.add_argument("--num_threads_nifti_save", type=int, default=12, help="Number of threads to run the postprocessing with")
args = parser.parse_args()
return args
def save_predictions_MLPerf(predictions, output_folder, output_files, dictionaries, num_threads_nifti_save, all_in_gpu, force_separate_z=None, interp_order=3, interp_order_z=0):
print("Saving predictions...")
pool = Pool(num_threads_nifti_save)
results = []
for i, output_filename in enumerate(output_files):
print(i, "/", len(output_files))
output_filename = os.path.join(output_folder, output_filename + ".nii.gz")
softmax_mean = predictions[i]
dct = dictionaries[i]
bytes_per_voxel = 4
if all_in_gpu:
bytes_per_voxel = 2 # if all_in_gpu then the return value is half (float16)
if np.prod(softmax_mean.shape) > (2e9 / bytes_per_voxel * 0.85): # * 0.85 just to be save
print(
"This output is too large for python process-process communication. Saving output temporarily to disk")
np.save(output_filename[:-7] + ".npy", softmax_mean)
softmax_mean = output_filename[:-7] + ".npy"
results.append(pool.starmap_async(save_segmentation_nifti_from_softmax,
((softmax_mean, output_filename, dct, interp_order, None, None, None,
None, None, force_separate_z, interp_order_z),)
))
_ = [i.get() for i in results]
pool.close()
pool.join()
del predictions
def load_loadgen_log(log_file, result_dtype, dictionaries):
with open(log_file) as f:
predictions = json.load(f)
assert len(predictions) == len(dictionaries), "Number of predictions does not match number of samples in validation set!"
padded_shape = [224, 224, 160]
results = [None for i in range(len(predictions))]
for prediction in predictions:
qsl_idx = prediction["qsl_idx"]
assert qsl_idx >= 0 and qsl_idx < len(predictions), "Invalid qsl_idx!"
raw_shape = list(dictionaries[qsl_idx]["size_after_cropping"])
# Remove the padded part
pad_before = [(p - r) // 2 for p, r in zip(padded_shape, raw_shape)]
pad_after = [-(p - r - b) for p, r, b in zip(padded_shape, raw_shape, pad_before)]
result_shape = (4,) + tuple(padded_shape)
result = np.frombuffer(bytes.fromhex(prediction["data"]), result_dtype).reshape(result_shape).astype(np.float16)
results[qsl_idx] = result[:, pad_before[0]:pad_after[0], pad_before[1]:pad_after[1], pad_before[2]:pad_after[2]]
assert all([i is not None for i in results]), "Missing some results!"
return results
def main():
args = get_args()
log_file = args.log_file
preprocessed_data_dir = args.preprocessed_data_dir
output_folder = args.postprocessed_data_dir
ground_truths = args.label_data_dir
output_dtype = dtype_map[args.output_dtype]
num_threads_nifti_save = args.num_threads_nifti_save
all_in_gpu = "None"
force_separate_z = None
interp_order = 3
interp_order_z = 0
# Load necessary metadata.
print("Loading necessary metadata...")
with open(os.path.join(preprocessed_data_dir, "preprocessed_files.pkl"), "rb") as f:
preprocessed_files = pickle.load(f)
dictionaries = []
for preprocessed_file in preprocessed_files:
with open(os.path.join(preprocessed_data_dir, preprocessed_file + ".pkl"), "rb") as f:
dct = pickle.load(f)[1]
dictionaries.append(dct)
# Load predictions from loadgen accuracy log.
print("Loading loadgen accuracy log...")
predictions = load_loadgen_log(log_file, output_dtype, dictionaries)
# Save predictions
# This runs in multiprocess
print("Running postprocessing with multiple threads...")
save_predictions_MLPerf(predictions, output_folder, preprocessed_files, dictionaries, num_threads_nifti_save, all_in_gpu, force_separate_z, interp_order, interp_order_z)
# Run evaluation
print("Running evaluation...")
evaluate_regions(output_folder, ground_truths, get_brats_regions())
# Load evaluation summary
print("Loading evaluation summary...")
with open(os.path.join(output_folder, "summary.csv")) as f:
for line in f:
words = line.split(",")
if words[0] == "mean":
whole = float(words[1])
core = float(words[2])
enhancing = float(words[3])
mean = (whole + core + enhancing) / 3
print("Accuracy: mean = {:.5f}, whole tumor = {:.4f}, tumor core = {:.4f}, enhancing tumor = {:.4f}".format(mean, whole, core, enhancing))
break
print("Done!")
if __name__ == "__main__":
main()