A Eclipsedource

Eclipse 4 (e4) Tutorial

Table of Contents

The e4 Application Model

Implementing Views

Extending the Application Model

Dependency Injection Basics

Behavior Annotations

Services

Eclipse 3.x vs. Eclipse 4 - Which Platform to use?
Soft migration from 3.x to Eclipse 4 (e4)

©® N Ok ODdN =

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 1/54

A Eclipsedource

The e4 Application Model

This tutorial series introduces the new concepts in the Eclipse 4 Application Platform, aka RCP
2.0. While some projects still use the compatibility layer, it is worthwhile to look at and benefit
from the new concepts. This tutorial and all other parts of the series are available as a
downloadable PDF.

We will start with the foundation of every Eclipse 4 application, the application model. In this first
part, we give an overview of the most important elements of this model to define the layout of
your application. Subsequently, we to introduce the different options for modifying this model.

Application Model vs. Views

In Eclipse 4, the workbench is defined in the so-called Application Model. This includes
windows, views, perspectives, menu contributions, handlers and key bindings. Using the model
you define the general design or “skeleton” of your application. Defining a model doesn’t already
require that you implement the single components. For example, you can add a view to the
model without implementing its contents.

To show the resulting separation between the general workbench design and the
implementation of single parts, | will not show any SWT or JavaFX code in this section. Instead,
we’ll focus on the model and how to connect the model to code.

Windows, Parts and PartContainers

The cornerstones of the application model are windows, parts and part containers. Contrary to
the eclipse 3.x platform, e4 has combined views and editors into the concept of Parts, which
represent views inside a window. If you add a part in the model, you can later connect it to your
implementation of the selected view.

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 2/54

A Eclipsedource

Application Model Implementation

public class oborldView {

gInject

public HelloWorldView(Composite parent){
Label label = new Label(parent, SWT.NONE);
label.setText("Hello e4!™);

}

The parts of an application model are connected later to their implementations

As parts cannot exist on their own, they are always contained in PartContainers. Those
PartContainers create an application layout. Besides windows, there are two elements which
can contain Parts: PartSashes and PartStacks. A PartSash will arrange contained elements
either vertically or horizontally. A PartStack adds an area, where the contained elements are
stacked behind each other, only one element is shown on top. PartSash and PartStack can
contain each other to create any kind of layout within a window. The following example shows
an example layout. The left side shows the respective Application Model, the right side the
rendered result. The first PartStack is set to “horizontal” orientation, the second one to “vertical”.
Please note, that part 5 would actually not be visible, if parts are not contained in PartStacks,
their label is not shown. For the example, we added an implementation for part 5, which shows
a label to make it identifiable in the screenshot. All other parts do not have any implementation,
yet, so you can design your application without already thinking about the contents of views. In
the following section, we describe how to create a first application model using Windows,
PartsSashes, PartStacks and Parts, only.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 3/54

A Eclipsedource

5 o

L=d

test -

Part 1 Part 2 || Part 3| Part4]

4 [Trimemed Window - test
Handlers
Windows and Dialogs
4 Controls
4 [[] Part Sash Container L
a [| Part Stack This is part 3
. [Park - Part 1
5 D Part - Part 2
a E—" Part 5ash Container
4 [] Part Stack
b [C] Part - Part 3
. [C] Part- Part4
i [] Part- Part 5

Installation

The most convenient way to modify an Application Model is the e4 Model Editor, which will be
described in the following. Starting from Mars, it is already part of some Eclipse Packages
(Eclipse for RCP Developers, Eclipse Modeling Tools and Eclipse for Committers). For carrying
on with the tasks from this tutorial, we recommend you to download the latest version of “Eclipse
for RCP developers” from here: https://eclipse.org/downloads/.

Creating an e4 Application

The easiest way to get started is to use a template to create a new e4 application. This will
create a bundle containing all necessary artefacts for an Eclipse 4 Application including the
Application Model. To create such a project, choose the "Eclipse 4 Application Project" entry
within the "New Project" wizard. Give a name to your project on the first page of the wizard and
select the “Create sample content” checkbox on the last page. This option will already fill the
template Application Model with some elements.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 4 /54

A Eclipsedource

Eclipse 4 Application

Cenfigure application with special values.

Product

Mame* !igiéii_pse.edexample

Properties
€SS Style: | ess/default.css

Preference Customization: !

Enable development mode for application model

Template cpticn
(Create sample content (parts, menu etc.)
[] Add a lifecycle class

LifeCycle class name: EdLifeCycle

@ | <Back | Ned> Finish | | Cancel

Before we have a look at the Application Model, we will start the template application once. For
this purpose, the template wizard creates a product definition and you can start the application
simply by starting this product. To do so, open the *.product file and click on run or debug in the
upper right corner of the editor.

C o) ¢ @

Click here to start the product.
As you can see below, the generated template application already contains a window, two

menus, a toolbar and a PartStack and a Part within it. In fact, the model also already contains a
PerspectiveStack and a perspective, but this is currently not visible.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 5/54

A Eclipsedource

File Help

| Enter text to mark part as dirty

T
Sample itemn 2
Sample item 3
Sample item 4

Sample itern 5

The e4 Model Editor

To modify the application model and therefore the layout of your application, Eclipse provides
the e4 Model Editor. You can open it by double clicking the Application.e4xmi located in the root
level of the project.

a 'L,—_‘,J: org.eclipse.edexample
i = JRE System Library [JavaSE-1.6]
i =4 Plug-in Dependencies
a4 % src
- f org.eclipse.edexample
i+ i org.eclipse.edexample.handlers
[[css
[+ = icons
B = META-TNF

= | Application.edxmi

g LG, O

<] mg.ecfipse.ééf-acamph.pmﬂuct
4tk pluginaeml

Open the application model to modify the workbench

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 6/54

A Eclipsedource

On the left side you see a tree showing the complete contents of the model. Tree nodes with
icons are model elements, e.g. the root element “Application”. in the level below those elements
you find

tree nodes without icons. Those are like folders and structure the elements, which are contained
by a parent elements. As an example, the application has a folder called “Windows and
Dialogs”. By expanding this node, you see all windows and dialogs, which are contained by the
application. By selecting any element in the tree, a detailed view will be opened on the right
side, allowing you to modify the properties of that element. If you select a folder, the right side
will present a list of elements which are contained in that folder.

The top-level elements of an application are usually one or more windows that you can find in
the application model in the folder "Windows and Dialogs”. The template project already
contains a TrimmedWindow. By selecting this element you can, for instance, modify the size of
this window, in the “Bounds” fields. Check the result by restarting the application.

=] Application.edxmi 52 = m,

[a 5 Appl\cation

Aeddiris] Trimmed Window
b Binding Contexts
BindingTables D ~
Handlers -
Commands Bounds(cy,w,h} 350 300
Command Categories Lakel | org.eclipse.edexample
4 Iif':v'fndows and Dialogs | Tooltip
4 || Trimmed Window - org.eclipse.edexar
- = Main Menu lcon URI 4, Find ...
fondles . Main Menu [¥]
Windows and Dialogs
a At] To Be Rendered [¥]
4 [Perspective Stack Visible [+
4 [Perspective Selected Element v

Windows and Dialogs
Controls
Shared Elements |3 Add Remove
. TrimBars
Part Descriptors
Menu Contributions

Binding Contexts

Toolbar Contributions
Trim Cantributions

Snippets
Context Properties

g Add Remove

Key Value

(Default| Supplementary|

ET Form | List| sam XM

With a right click in the on folders in the tree, new elements can be added within those folders.
Using the delete action in the right click menue of an element, you can remove them. As an
example, you can remove the existing PerspectiveStack and just add a single Part instead. To
do so, you need to expand the “Controls” item of the Trimmed Window in the Application tree.
After a restart of the application, you will notice that the main area of the application does not

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 7154

A Eclipsedource

have a border anymore. However, the new part isn’t visible, as it show no tab anymore. Tabs of
Parts are only visible, if parts are contained in PartStacks. Try to add a PartStack as a child
element of the TrimmedWindow and move the part in it. Adapt the label property of the Part,
restart the application and check the result.

4 |27 Application ~
iy Add-ons E‘ o
I Binding Contexts = =
B BindingTables ID | test.part.ryPart @ _4 - it
I Handlers] Hle, Helg
> Commands L] ’ =t
Command Categories Accessibility Phrase MWDo

4 Windows and Dialogs

7 Tri f : Tooltip
4 [| Trimmed Window - test .
> 5 Main Menu lcon URI L Find ...
Handlers
Windows and Dialogs Class URI | _, Find ..
4 Controls

; Container Data
4 EI Part Stack

> [] Part - My Part ToolBar []
Thared Flements Closeable []
TrimEars To Be Rendered

Model Spy (Live Editing)

Eclipse allows you to define the workbench using the application model even without providing
implementations. However, this is sometimes hard to work with, because empty Parts are often
hard to identify. To resolve this, there is a special version of the Model Editor called Model Spy.
It allows you to access the application model of a running application, modify it and highlight
selected components. The Model Spy is not yet part of the standard Eclipse Packages, it can be
installed from the e4 update site.

To enable the Model Spy you need to start an additional plugin along with your application.
Please note that you typically do not want to make the Model Spy a permanent part of your
application, so it should not be added to the product. Instead, open the run configuration and
add the bundle * to it. Additionally click on "Add required” to include the required dependencies.
A run configuration should have been created for you when you first started the product.

E] Main | 6= Arguments ‘3%,“ F'Iug-ins. \\13—_ Cunfiguraticnxé Tracing.' 7 <] Envirenment |] Cl:rmmon.:

Launch with: | plug-ins selected below only v Default Start level: | 4 5 Default Auto-Start:
live
Plug-ins Start Level Auto-5Start
4 [m] %] Target Platform
e org.eclipse.ed.tools.emf.liveeditor (0.12.0.w20141001-0759) 0 = | default v

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 8/54

A Eclipsedource

In the running application you can start the live editor via ALT+SHIFT+F9. This editor works
exactly like the editor in your IDE, however, it directly accesses the application model of the
running application. If you, for instance, open the TrimmedWindow in the editor and change its
size or position, the changes are directly applied in the running application.

f. Trimmed Window

XMEID _TL4d5vOGEeCSG5zAWYHPkg
Id
Bounds(xy,w, h) 45 43 827 317

The live editor is not only capable of modifying elements, you can even add new ones. As an
example, if you add a new window to the application model (right-click on the folder “Windows
and Dialogs”), a new window will be opened in the application. To maintain an overview of
which components are visible in the application, these components can be colored. By
right-clicking an element in the live editor, e.g. the TrimBar and selecting "Show Control”, the
control will be colored in red in the running application.

7| org.eclipse.edexample = Lﬁ |
File Help
| ® [

Using this feature, one can easily visualize changes within the application model. This is
especially useful for elements which are not directly visible in the Ul. As an example, if you add
a new Part in a Window (without a containing PartStack), it will not be visible without coloring, as
it does not have any content yet.

If you use the live editor to change the application model, the changes will only be reflected in
the running application. To transfer them into the deployable application, you can copy the
modified version of the model using the tab "XMI" and copy it into the model available in your
IDE.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 9/54

A Eclipsedource

Development Model vs. Runtime Model

So far, we have created and modified the Application Model in our IDE, meaning during
development time. This was done by using the e4 Model Editor, the resulting model was
persisted in the Application.e4xmi file. When a e4 application is started, this file is deployed
along with the containing bundle. When an application is started, a copy of this file will be placed
in the workspace of the running application. From there on, this copy will always store the latest
state of the running application, e.g. the arrangement of Parts. Consequently, when re-starting
the application from within the IDE, this copy will not be overridden by default. While developing
an application, you typically want the new state of the Application Model, e.g. when you have
added some new elements. You can achieve this by either deleting the workspace of the
running application completely or by adding the command parameter “-clearPersistedState” to
the product/run configuration. Please note that the product we have created before using the e4
wizard already contains this parameter (see the .product file on the tab “Launching”).

In-Memory
Model

G @ Loaded/Stored on
application start/stop

) Runtime

Runtime Workspace Model (XMI)

ﬁ Copy on first start-up

Development
Development Workspace Model ?xmu

The default e4 application de-serializes this file and creates an in-memory representation of it. A
rendering component interprets this model and creates the workbench describe by it, i.e.
windows, parts, etc. If the application is started again with a adapted model, this will be reflected
in the Ul. Even more, the application model can even be changed at runtime using it's API, e.g.
the label of a window can be changed or new parts can be created. The rendering component is
listening to all changes to the model at runtime and will reflect those changes in the running
application. We will describe in the following section how to access the model at runtime.

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 10/54

A Eclipsedource

Programmatic Access to the Application Model

During runtime, there is a Java Object for every element of the deserialized Application Model.
Technically, those objects are EMF objects (EObjects), so the API is very familiar to anyone
who has worked with EMF before. By using this APl you can create or modify parts of the
application programmatically, like, for example, reacting to a user action. To test this in the
template

application created before, you can take a look at one of the existing handlers, such as the class
OpenHandler. As you can see in this handler, there is a method execute() marked with the
annotation @Execute, which will be called if the connected Toolltem is clicked by the user.
Dependency injection allows the programmer to easily define which parameters are needed
within this method. We will go into detail about dependency injection and the implementation of
handlers later, for now, we will just use the existing handler to execute some example code,
which modifies the Application Model at runtime.

In the following code example, the method requires the application istself as parameter, so it will
be injected by the framework. Please note, that the Java Objects (more precisely their
interfaces) to access the Application Model at runtime are all prefixed with a “M”. As an
example, you can access a Window using the interface “MWindow” or a Part using the interface
“‘MPart”.

In the following code example, a new window is created. To add this new window into the
application, the application is required as a parameter. Using the API, the window is sized, a
new part is added into the window and the window is added to the application. By adding the
window to the application, it is opened in the running application. Start the application and press
the toolbar button to check the result.

@Execute

public void execute(MApplication application) {
MWindow mWindow = MBasicFactory.INSTANCE.create TrimmedWindow();
mWindow.setHeight(200);
mWindow.setWidth(400);
mWindow.getChildren().add(MBasicFactory.INSTANCE.createPart());
application.getChildren().add(mWindow);

Conclusion

The e4 application models allows you to define the general design of an application in a
consistent way, without implementing single parts in advance. We described different methods
to modify the application model, including how to modify the model during runtime using the live
editor or the API. At this point we have only created placeholders in the application. The next
part of this series describes how to connect the application model with the implementation of Ul

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 11/54

A (clipseSource

components, that is, how to create the connection between a part and the implementation of a
view filling this part.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 12 /54

A Eclipsedource

Implementing Views

From the Application Model to the Implementation of
Views

This tutorial series introduces the core concepts of the Eclipse 4 Application Platform (e4). One
of the key innovations of e4 is the separation and independance between the application model
and the implementation of the application’s parts, such as view. In the first part of this tutorial we
provided an overview of the application model, as well as the different ways to modify it, using
the editor or the API. With the application model, it is possible to define and test the basic
design of an application without having already implemented single views. In this second part of
the tutorial, we explain how to create the missing part, the implementation of views, for which
we have thus far created only placeholders in the application model. This tutorial and all other
parts of the series are now available as a downloadable PDF.

An application model without views?

At first glance, it might be confusing as to why Eclipse 4 facilitates such a clear separation
between the application model and the implementation of Ul components. This is especially
true, as one part doesn’t really make sense without the other. In Eclipse 3.x and also in other
frameworks, implementations of Ul components, such as views, have to implement given
interfaces. This approach defines exactly which methods a developer has to implement to
create a view. However, this approach also restricts the ability to reuse the implementation of Ul
components.

A well-known example for this problem is the differentiation between views and editors in
Eclipse 3.x, which required different interfaces to be implemented. If you want to reuse a view
as an editor or vice versa, you had to refactor it. Another example would be the reuse of a view
in a modular dialog. Finally, when RCP applications are transferred to another context, e.g. on a
mobile device (see RAP mobile / Tabris), the design of the workbench has to be changed to fit
smaller screens. Therefore one of the goals of Eclipse 4 is to implement Ul components in a
modular and independent way. The Ul consists of small, independent parts, which are not
bound to any framework classes such as editor or view, and can be reused in any context.
Finally, the application model itself has no Ul toolkit dependencies at all. Therefore, it can also
be used for implementing applications in other technologies than SWT, for example in JavaFX
as provided by the e(fx)clipse project.

A view without an application model?

To demonstrate the modularity of the application model and the implementation of views, we
started in the first part of this tutorial with the creation of an application model without any
implementations. Using the e4 tools, you can even visualize the "empty” application model.

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 13/54

A Eclipsedource

Before we fill the application model with implementations, we’ll demonstrate the opposite, that
is, implementing views using SWT without an existing application model. We’'ll develop the
modular parts of our application before we know the exact design of the workbench to illustrate
Eclipse 4's modular Ul development.

In Eclipse 4, views do not have to implement a given interface. Instead, views define the
parameters that the workbench needs to provide. In one of the simplest cases, an SWT view
just requires a parent composite, on which the view can be placed. The annotation "@Inject” will
be used later on by the Eclipse 4 framework to determine if the parameters of the view should
be "injected”. We will go into more detail about dependency injection later in the tutorial.

The following code example shows a very easy "Hello World!” view in SWT.

public class ExampleView {
@Inject
public ExampleView(Composite parent) {
Label label = new Label(parent, SWT.NONE);
label.setText("Hello World!");

}
}

Using the application model, this view can be shown later on as part of the workbench in an
application. To demonstrate the flexible reusability and testability of such a view, we will first use
it without any workbench. The following code example shows how to open the "HelloWorld” view
just using plain SWT. It is worth mentioning that this is a plain Java program. To run this, we
only need the relevant SWT libraries. This shows, that the view can be reused anywhere, e.g. in
a dialog, a wizard or even outside of the Eclipse workbench.

public static void main(String[] args) {
Display display = new Display();
Shell shell = new Shell(display);
shell.setLayout(new FillLayout());
new ExampleView(shell);
shell.open();
while(!shell.isDisposed()) {
if(! display.readAndDispatch()) {
display.sleep();
}
}
}

This screenshot shows the running Hello World application started from a plain Java program.
i L= | B |

Hello World!

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 14 / 54

A Eclipsedource

The Reunion

So far we have created and tested an application model and the implementation of a view
separately from each other. Now it’s time to bring both parts together. We do this by adding an
element ("Part”) in the application model representing the view within the workbench (we can
also of course use an existing one). The part will be linked to the implementation of the view that
we have just created. Using the e4 template application created with the e4 tools (see section
on Installation in the Eclipse 4 Tutorial — Part 1), a part can, for example, be created within the
existing "PartStack”.

You see in this screenshot that parts are added to the application model as placeholders for
views and editors.
4 Windows and Dialogs
4 [] Trimmed Window - org.eclipse.ederarmple
= B Main Menu
Handiers
Windows and Diglogs
4 Controls
[G5] Perspective Stack
4 [I¥ Perspective
Windows and Diglogs
4 Controls
4 [Part Sash Container
4 r=_| Part Stack
| 4 b Part |
Menus
Handlers

To link the part to the implementation of the view, the view’s class has to be selected in the
properties of the part under "Class URI”. When you start the application, Eclipse 4 will create a
part within the workbench and the linked view implementation will be initialized. That means, the
constructor of the view implementation will be called. Parameters, which are required by the
view, will be taken from the current context and will be injected into the view. As an example,
Eclipse 4 will use the content area of the part as a parent composite for the view and therefore
place the view within the part.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 15/ 54

A Eclipsedource

] Part

II¥ | org.eclipse.edexample.part.examplePart
Label

Accessibility Phrase

Tooltip
lcon URI & Find ...
Class URI ' I:;undIeclass:_-'_forg_.ecIipse.eﬂexamp_lafor_g.ec]p;exlexample.parts.E:(amEe‘u’i_w;{ 4 Find ...

Container Data

TeolBar [
Closeable []

To Be Rendered [+]
Visible [v]

Figure : Parts are linked to the implementation of views using the Class URI

Handlers

For our next step, we want to add some behavior to our application. Therefore, we will
implement a Handler, which is triggered by a button in the toolbar of the application. Handlers
are the components, which define some specific behavior to be triggered. Similar to the
implementation of Ul components, Eclipse 4 allows a clean separation between the framework
and the implementation of a handler, which enables reusability and testability. To demonstrate,
we’'ll follow a similar workflow to the previous sections, implementing and testing the handler
independently from the integration into the application model. We’'ll then integrate it in a
following step.

Also parallel to how Ul components work in Eclipse 4, handlers don’t have to implement a given
interface. Instead, they define the required parameters. This reduces the number of required
parameters to the minimum needed, making it also easier to test the handler. The following
code example shows the implementation of a very basic handler for opening a "Hello World!”
dialog. The handler needs only one parameter, a shell, to open the dialog. Using the annotation
"@Execute”, the handler tells the Eclipse 4 framework which method to execute. In addition, the
annotation has the same effect as "@Inject”. That means that the required parameters of the
method execute(), in this case a shell, will be injected by the framework. As the example
handler does not have a state, the execute() method can be static.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 16/ 54

A Eclipsedource

public class MyHandler {

@Execute
public static void execute(Shell shell){
MessageDialog.openinformation(shell, ", "Hello World!");

}
}

Handlers in Eclipse 4 are very easy to test, reuse and even chain, as they only require the
parameters they really use. The following code example shows a simple Java program which
tests the implemented handler.

public static void main(String[] args) {
Display display = new Display();
Shell shell = new Shell(display);
shell.open();
MyHandler.execute(shell);
while(!shell.isDisposed()) {
if(! display.readAndDispatch()) {
display.sleep();
}
}
}

The code example shows a complete Java program again. However, these tests could also be
written in plain JUnit. If you imagine a handler implementing some behavior (in contrast to just
open a dialog), it makes sense to have a JUnit test for the method marked with @Execute.

To integrate the handler with a button in a toolbar, we need another element in the application
model. The easiest way to integrate the handler is using a "Direct Toolltem” (see Figure). The
Toolltem is placed in the ToolBar and therefore specifies, that there is another button to be
clicked. Analogous to the Part, the implementation of the handler can be bound to the element
by setting the Class URI. This specifies, that the implementation of the handler is executed,
when a user clicks on the toolbar button. Finally, we need to set a label or icon for the tool item
to make it visible in the example application.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 17 1 54

A Eclipsedource

4 Windows and Dialogs
4 f Trimmmed Window - org.eclipse.edexample
[Main Menu
Handlers
Windows and Dialogs
» Controls
Shared Elements
P TrimBars
4 [] Window Trir - Top
4 = Toolbar
= £ Handled Tool ltem
[= Handled Tool ltem

I@ Direct Tool ltern - My ltem I

Figure : Creating a Direct Toolltem in the toolbar of the application

Using a "Direct Toolltem” is the fastest way to integrate a handler with an item in the toolbar.
However, for more flexibility and better reuse we recommend using commands and handlers.
This enables to have alternative implementations of a certain user action and also to use key
bindings for triggering handlers.

Commands, Handlers and Items already existed in Eclipse 3.x. They facilitate a separation
between a visible item to trigger this action (Menultem or Toolbarltem) and the implementation
of the action (Handler). As a binding in between, Eclipse defines the concept of a Command. All
three elements, Handlers, Commands and Items are created as part of the application model.
Items are created at the place, they should be displayed to the user, e.g. in a toolbar (as shown
in the following screenshot) or in a menu. For both item types (Menu and Toolbar) use handled
item, e.g. HandleToolbarltem. Commands are defined on the application level (see also the
following screenshot) and are therefore valid for the whole application. Handler can be created
on three levels, the application itself, on a window level or for a specific part, only.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 18 /54

A Eclipsedource

a [i2] Application

- Add-ons
Binding Contexts

[BindingTabies

4 Handlers

ﬁ'l Handler - quitCommand
@, Handler - openCommand
‘ﬁ, Handler - saveCommand
& Handler - aboutCommand

ﬁg Handler - My Command
4 Commands

\E} Command - quitCommand
,,,;5 Command - openCommand

Command

;‘gf Command - =&

#. Command - aboutCormmand
2 Command - Wy Command
Command Categories

4 Windows ond Diologs
a | Trimmed Window - arg.eclipse edeample

ri.e
s Main Menu

Handlers

Windows and Diglogs
I Controls

Shared Elements
a TrimEBars

a [Window Trim - Tap
4 Toolbar
i @ Handled Tool ltem
i @ Handled Tool ltem
| » [f Handled Tool ltem - My lterm

As the following diagram shows, items and handlers reference a certain command and are
thereby bound to each other. It is possible to bind several items to the same command, e.g. to
show an action in a menu and in a toolbar at the same time. It is also possible to bind multiple
handlers to the same command providing alternative implementations of an action. However, in
this case, only one handler must be active at the same time. The Eclipse 4 Application platform
will automatically activate handlers in the current application context. As an example, if a certain
part is focussed, its specific handlers will be activated. If you have only one implementation for a
handler, you can place it on the application level, if you have alternative implementation for
different parts or windows, you place them in those elements respectively.

Y

Command [= ltermn

/'y
[|

Menu Toolbar
ltem ltem

Handler

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 19/ 54

A Eclipsedource

After all three elements are created, both the handler and the item need to be bound to the
command (see the following screenshots. Commands can now be reused within the application,
as an example, key bindings can be used to trigger the execution of a command or other items
can be bound to it.

i Handler

ID | org.eclipse.edexample.handler.myHandler

Command | My Command - org.eclipse.edexample.command. myCommand

Class URI | bundleclass:y//org.eclipse.edexample/org.eclipse.edexample.handlers. MyHandler

.,;5, Command

D .org.eclipse.edexample.command.myCDmmand
Mame M:;fl:crmmand

Description

g2 Handled Tool tem

1y u:urg.eclip;e.edlexample.handl;adtu:u:llitem.rr_'l}rH.andler
Type [Push
Label | My ltem
Accessibility Phrase
Tooltip
lcon LRI

Menu [
Enabled
Selected

Visible-When Expression | <Mone>

Command | My Command - 0rg.eclipse.v.'-.;dexample.command.myCammand

To Be Rendered
Visible [+#]

Figure : A handler is bound to its implementation as well as to a command.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 20/ 54

A Eclipsedource

Conclusion

Eclipse 4 facilitates a clear separation between the definition of a workbench (i.e. application
model) and the implementation of concrete parts of it (e.g. views or handler implementations).
Implementations use dependency injection to define which parameters they require. This
approach leads to minimal interfaces and implementations that are very easy to test and reuse.
This tutorial showed how to create and test views and handlers without having a corresponding
element for them in the application model and how to integrate them into a real application
afterwards. In the next installment of this tutorial, we describe how to extend and modularize the
application model, that is, how to contribute views and handlers from several plug-ins.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 21/54

A (clipseSource

Extending the Application Model

In the previous parts of this tutorial series we described how to create an application model and
link those elements to implementations. Until now we have only worked with one application
model. However, Eclipse applications usually follow a modular design. That means, an
application consists of an arbitrary number of bundles, which add functionality and are loosely
coupled.

In this part, we describe how to extend an existing application model with new elements, for
example, adding a new entry to a menu. This tutorial and all other parts of the series are now
available as a downloadable PDF.

Only one model?

One of the major advantages of Eclipse RCP development is the modular design of
applications. The module concept, based on OSGi, enables the independent development of
features, as well as their independent deployment. A very good example of such a modular
application is the Eclipse IDE, where many additional plugins can be installed. Many of these
extensions affect the workbench design of an application, that is, they add additional buttons,
menu items and views. In e4, the application model is the central and consistent approach to
designing the workbench. However, there needs to be a way to extend the application model
from new plugins. Eclipse 3.x uses extensions points for this. Eclipse 4 offers model fragments
and model processors. A model fragment is a small application model in itself and defines
elements which need to be added to the root application model. Fragments can add anything
that can be part of the application model, for example handlers, menu items or even windows.
The following diagrams show an example of such an extension. The application model of the
plugin "org.eclipse.example.e4" is extended by a fragment from the plugin
"org.eclipse.example.e4.extension". For every element, in this case a Window, a Toolltem and a
Part, you need to define the place, where it gets added in the core model.

arg.eciipne s mpie el nrg.-:tt-p s exarmple.ed, extension

Anphcation ol Miodel Fragment

Windonar
Wirndow

ToolBar Toalitem

Partatack Part

The application model can be extended using fragments.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 22 /54

A Eclipsedource

Processors offer a mechanism to programmatically extend an application model. This allows the
application to react to the current state of the model. As an example, you can only add a new
button if another contribution is installed or if you can remove existing elements. In this tutorial,
we describe both ways of extending an application model, fragments and processors. In both
cases, elements of the application model are linked to their implementations as described in the
previous chapters of this tutorial. The implementation is usually part of the plugin doing the
contribution, as in the previous example "org.eclipse.example.e4.extension”.

Warm-Up
The first step is to create a main plugin and an application model which can be extended. As in
the previous parts of this tutorial, we will use the e4 template application, which can be created
using a wizard. It is important that elements in the application model which will be extended
have a unique id. This id is used to reference elements from the extending fragment. In the
template application, both the application and the toolbar already have an id. As we want to add
a new part to the existing part stack, the part stack also has to have an id. Therefore, the field
"id” has to be set for the part stack in the application model (Application.e4xmi).
Windows and Dialogs
4 [] Trimmed Window - org.eclipse.exampleed
- Main Menu
Handlers
Windows and Dialogs
4 Controls
a [OF Perspective Stack
a [B Perspective
Windows and Dialogs
4 Controls
4 E Part Sash Container
a || Part Stack

The existing part stack needs a unique ID

E| Part Stack

II¥ | org.eclipse.example.ed.mainpartstack

Accessibility Phrase

The ID allows referencing of an existing element from an extending fragment

Additionally, we need a second plugin to extend the first one. For this example, this second
plugin needs the following dependencies:

« org.eclipse.e4.ui.model.workbench

* org.eclipse.e4.core.di

* javax.inject

« the plugin to be extended

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 23 /54

A Eclipsedource

Model Fragment

A model fragment is nothing more than a small application model. It contains elements, which
are supposed to be added to another application model.

The most comfortable way of creating a fragment is provided by the “Extract Fragment” wizard
of the e4 model editor. It allows you to add elements in the application model at the place you
want them to appear at the end, and extract them to an extending fragment afterwards. To try
the wizard, add a new Part to the existing PartStack in your application model. Now right click
the new Part and select “Extract into a Fragment”. In the following wizard, you can select "New”
for the model fragment file and its container. Please note, that it usually does not make sense to
place a fragment in the same bundle as the application model, but for modularity reasons in an
additional bundle.

Alternatively to using the extract wizard, you can also create a model fragment from scratch.
This might be necessary, e.g. if you cannot directly access the application model you want to
extend.

A file containing model fragments can be created using the wizard provided by the e4 tools.
Although the editor says “New Model Fragment”, it will actually create a file, which can contain
an arbitrary number of model fragments.

4 = Model
o] Mew Application Model
i Mew Model Fragment

The extending plugin is set as a container for the model fragment file. After finishing the wizard,
the model fragment file is opened in an editor which works similarly to the editor used to modify
an application model.

The next step is to add a model fragment to the model fragment file. A model fragment has to
define at which place the main application model is extended. This is done through an Element
ID and a feature name. The Element ID defines which element of the main application model is
extended, e.g. a tool bar. The feature name defines the containment reference to which the new
element is added. For elements such as toolbars, menus, windows, or even the application, the
feature is usually defined as "children”. If you are looking for the right containment reference,
take a look at the core application model you want to extend. The containment references are
typically shown as “folders” (child elements without an icon).

In the following example, a new element is added as a child of the existing toolbar.

TooiBar -
tne‘

=0 Toclber (toclbanorg.echpse.ul.maintocibar - plafon

The element ID defines which element is extended

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 24 /154

A Eclipsedource

a4 & ToolBar

@ children: List<=ToolBarElernent>|
clonableSnippets : List< ApplicationElement>
curSharedRef | Placeholder
parent : ElementContainer

=

1

selectedElermnent | ToeclBarklern

o o 0 9

e
transientData : List<String ToObjectMap>

r }

o wvisibleWhen : Expreszzion

The feature name defines where the new element is added

The fragment now defines the location in the core application model, where elements will be
added. As child elements of the new fragment, now application model elements can be created.
All elements in a fragment will be added to the specified location in the core application model.
As a simple example, we will add a Direct Tool Item as a child of the fragment (see Figure). To
make it visible, a label or icon should be set. To trigger some action when the tool item is
clicked, it should be linked to a handler. In the example, it is linked to a handler saying "Hello
Eclipse!”.

public class MyHandler {
@Execute
public void execute(Shell parent) {
MessageDialog.openinformation(parent, ", "Hello Eclipse!");

}
}

[fragment.edmi 53 =iE

2 Model Fragment [.Jefinitilon
/ i Model Fragment
imports =
a Model Fragments
4 {7 Model Fragment - children (toolbariorg Element I | toolbarorg.eclipse.ui.main.toolbar Find ...
E3 Direct Tool ltem - myltem - T

Featurename | children Find ...

Pasition in list

DirectToolltem W | Add |2 Remove

2 Direct Tool ltem

Defaultél
To connect the Direct Tool Item to the handler, the "Class URI" needs to point to the

implementing class, located in the extending plugin. Of course, it is also possible to add more
than one element to the core application model. If they are supposed to be added to the same

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 25/54

A Eclipsedource

location, they can all be placed within one model fragment. If they need to be added to different
locations, you will need several model fragments specifying those locations. However, the
model fragments can still be placed in one model fragment file. For example, to add a tool item,
a handler and a command, you can add three model fragments to one model fragment file.

In any case, the every model fragment has to be registered via an extension point. This will
usually happen automatically, e.g. if you use the “Extract” wizard or the “New model fragment
wizard”. There is an optional attribute “apply” for the extension, which controls if model
fragments are merged into the core application model. There are three possible values:

e initial: The model fragments is only added to the core application model, if there is no
persistent application model, typically, if the application is started the first time. On a
second start-up, if the former state of the application model is loaded, the fragment will
not be merged again

e notexist: The model fragments is only added to the core application model, if the
elements added by the fragment are not already existing in the core application model

e always: The model fragments are always added. Please note, that this might lead to
duplicated elements in the core, as elements in the model fragment are added again on
every start-up

<extension id="id” point="org.eclipse.e4.workbench.model’>

<fragment
apply="initial"
uri="fragment.e4xmi”>
</fragment>

</extension>

Finally, the new plugin adding the model fragment has to be added to the existing product
configuration. Please note, that this will not happen automatically, nor will there be an error, if
you forget this. The advantage is, that our application and the core application model has no
dependency to our model fragment and its containing bundle. We can add, remove or replace it
without breaking anything. After restarting the application, the tool item should be visible in the
same way as a new part would be when added to the existing part stack.

-

5| org.eclipse.example.ed

File Help

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 26 /54

A Eclipsedource

Model Processor

In addition to being able to use fragments, it is also possible to programmatically extend the
application model. In e4 this is accomplished using processors. Processors are especially useful
if the extension needs to react to conditions within the existing application model, or if the
existing application model is to be modified by an extension. Please note that you should prefer
model fragments for all cases, where those two pre-conditions are not met. In general,
programmatic modifications on the application model should be an exception, as they typically
rely on some preconditions and are therefore not as robust as model fragments. Another
disadvantage will be discussed in the conclusion of this chapter.

In the example application, we will add a new window that is positioned relatively to the existing
window. The new window has the same height as the existing one and is positioned to the left of
it. To free space for the new window, the existing window is moved right. To modify the
application model, some experience with EMF is useful. A tutorial on EMF can be found under
this link. The following code shows the implementation of the described processor. The method
to be executed is marked with the annotation @Execute, like in the implementation of handlers
before.

Like in other implementing classes, required parameters can be injected, in this case the
modified application model (MApplication) can be injected. All elements of the application model
provide a corresponding Java interface to access it programmatically. All these interfaces are
prefixed with an “M” (for “Model”). As an example, to access the application model element itself
(the root node), you use MApplication, for a window “MWindow”, respectively. All properties of
an application model element are then accessible using simple getters and setter, e.g.
“setHeight”. References are accessible via a modifyable list, as an example the last line of the
example adds the new window in the containment reference of the application. As processors
have no context they are bound to, it is not possible to directly inject a window, it would not be
unique for the platform, which window to inject. Instead, the model service is used to retrieve a
window with a certain ID within the application. The ID to identfy the existing window can be
found in the application model editor. Please have a look at this tutorial to learn more about
services in e4.

After moving the existing window, a new window is created by using the model service again.

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 27 /154

A Eclipsedource

public class Processor {

@Execute
public void execute(MApplication application, EModelService
modelService){
MWindow existingWindow = modelService.find(String
“IdOfExistingWindow”, MUIElement application);
existingWindow.setX(200);
MTrimmedWindow newWindow =
modelService.createModelElement(MTrimmedWindow.class);
newWindow.setWidth(200);
newWindow.setHeight(existingWindow.getHeight());
application.getChildren().add(newWindow);

Finally, the same as we did for the model fragment, the processor has to be registered via an
extension point. The “beforefragment” attribute specifies, if the processors should be executed
before or after all model fragments have been merged. In the example, after a restart of the
application, the second window should open.

<extension id="id” point="org.eclipse.e4.workbench.model’>
<processor
beforefragment="true”
class="org.eclipse.example.e4.extension.Processor’>
</processor>
</extension>

Conclusion

Model fragments and processors allow the extension of an existing application model. This
supports the modular design of an application as new features including Ul contributions, can be
easily added or removed from an existing application. The definition of model fragments works
in the same way as the definitions of the application model itself and does not require additional
knowledge. The programmatic extension using processors uses a consistent EMF API and
offers full flexibility.

In general, model fragments should be preferred over processors. First, they follow the same
model-based approach to define elements as done in the core model using the application
model editor. Second, model fragments are defined declaratively, so the platform can

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 28 /54

A Eclipsedource

understand its contents. Thereby, the platform can decide if elements must be merged based on
a given directive (always, initial, etc.). To get this behavior with a model processor, it has to
implemented manually.
The next chapter of this tutorial will describe dependency injection in Eclipse 4. We will describe
how to influence the injected parameters using different annotations, as well as how to trigger
the injection manually.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 29 /54

A Eclipsedource

Dependency Injection Basics

In the previous parts of this tutorial series we described how to create an application model, link
those elements to implementations and how to extend the application model. This tutorial and
all other parts of the series are now available as a downloadable PDF.

In most of the programming examples provided so far, we implicitly used a common concept of
Eclipse 4: dependency injection (DI). DI plays a central role in Eclipse 4, reason enough to
devote a whole part of this tutorial to it. In this part, we describe:

e How dependency injection works in general

e Which objects can be injected.

e How the Eclipse Context works.

e Which annotations can be used to influence the injection.

Dependency Injection?

In web programming, dependency injection has been a hot topic for some time, with prominent
representatives such as Google Guice or Spring. With Eclipse Version 4, Dependency Injection
enters into the Eclipse world. It is essentially about how certain objects can access other objects
from the outside. An Eclipse example would be the implementation of a view that needs a
parent composite, an input object or a service, such as a logger.

To understand the concept and the motivation behind DI, we will use a metaphore, which has
nothing to do with programming. If you are already familiar with DI in general, you might skip this
section and continue with the next one already focussing on how to use DI in Eclipse.

So again, DI deals with the problem of how to retrieve certain objects while implementing
something. A comparable example from the real world would be grocery shopping based on a
shopping list. On the shopping list are all the things you need, in programming that would be all
objects that you need to retrieve. Now, there are three ways to make the purchase.

Variant one would be to go to the appropriate stores and take the necessary goods from the
shelves. In the world of programming this would correspond to the access to singletons. One
must, however, know exactly where you can buy the required goods. Additionally, stores can
close or relocate, the person using the store might move to another city, not being able to use
the store anymore. In all cases, your way of getting goods would not work anymore. Therefore
this option is very inflexible and requires detailed knowledge.

The second variant would be to order a pre-made food box that covers the shopping list as well
as possible. The box is delivered to your door and you do not care where it comes from. Even if
you move, you just need to change your address to still get the same box. However, you might
get more or less than you really want. Missing something, you still need to go to the store.
Second variant corresponds to the implementation of interfaces that are defined by a framework
and thus “filled” by it. You are not that much bound to the framework (to the interface, though),
but you need to be happy with the parameter set defined by the framework.

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 30/54

A Eclipsedource

Version three, a hypothetical one, would mean that you just hung a piece of paper on your
fridge, describing exactly what is needed. When you returned home, the fridge would be filled
with exactly these goods. You get exactly what is needed and you do not have to be concerned
about where it comes from. This is not (yet) possible in the real world, but through Dependency
Injection it is possible in programming with Eclipse 4. The basic idea is therefore that classes
specify for themselves which objects they need from the outside. The framework will then
“inject” these objects.

Injected objects can be fields of a class, parameters of a constructor or parameters of a method
that is called by the framework. In the simplest case, required objects are marked by the
annotation @Inject. There are a number of additional annotations that control the behavior and
the timing of the injection. For instance, the annotation @Execute marks a method in a handler
which is called during the execution of the handler. The required parameters for this method will
be injected:

@ Execute
public void execute (MyObject requiredObject) {
// Here is the actual handler code

}

The Eclipse Context

Having objects injected seems intuitive and practical, but leaves open the question where
injected objects actually come from and how they are identified. So how does the framework
determine which objects to inject at a certain place? In Eclipse 4 there is the so-called Eclipse
context. This is a kind of list of objects that are ready for injection. Technically this context is a
map of strings and objects. Without further information, an object is saved under its full class
name, for example “org.eclipse.swt.Composite”. Now, when an object of a particular type is
requested, the appropriate context will be searched. If it contains an object of the required type,
this object is then used to call a constructor or a method, or to fill a field.

Context | ____ _ dnjects | MyClass
Map =5tring, Object> @inject MyObject
|
:MyObject

Dependency Injection using the Eclipse Contexts

However, in Eclipse 4, there is more than one global context — otherwise, it would be very
difficult to identify the correct object to inject. In the example of a view that requires a composite
as a parent, which composite to inject is ambiguous. Therefore, some elements of the
Application Model have their own context during runtime, such as a window, a perspective or a
part. These are hierarchically linked. For example, if an object is not found in the context of a
part, the context of the perspective, or the window, the workbench and the OSGi context are

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 31/54

A Eclipsedource

searched. The OSGi context contains objects that are valid for the entire application, such as
services.

! s
loaboup = 3
A LY
b \
f‘i-q Workbench Context | Workbench "'E"'Cl‘-
'.u-u;uu *
ry \
) 1'.
A Window Context Window \
f
1
Ioakup i
) 1
Y
b 3]
iz Perspective Context Perspective I
LT !
\ ¥
o MyView
Part Context Part bricd s .
i @inject MyService

The Eclipse context is hierarchically linked.

Generally, all elements of the Application Context Models can be accessed along the ascending

hierarchy. So, for example, in the context of a part, the window in which the part is contained
can be injected:

@ Inject
public void myMethod (MWindow window) {
}

Additionally, the context contains some SWT elements associated with the Application Model
such as the composite of a part or the shell of the running application. Eclipse 4 services also
ensure that certain commonly accessible objects, such as the current selection or the Eclipse
Workbench Preferences are available in the context. The root context contains all OSGi
services. Last but not least, you can insert your own items into the context.

@Named

If you wanted access to not only a specific type, but to the specific instance of a type, you can
specify a name for the injection. This is done via the additional annotation @Named, which is
used in combination with @Inject. @Named allows the additional specification of a string that
defines the name of the object to be injected. In this case, the context will not search for the
type of object to be injected, but for the corresponding string. Specifically, an injection without
@Named is just a shortcut, where the type of a parameter is assumed to be the name of the
variable to be injected. Conversely, objects which are placed in context with no further indication
of a name, are available under the full class path. In the following example @Named therefore
has no effect and could be omitted:

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 32/54

A Eclipsedource

@ Inject
@ Named ("org.eclipse.swt.widgets.Composite")
Composite parent;

Eclipse 4 services automatically include some objects in the context under certain IDs. The valid
names are found in the interface IServiceConstants. In this manner, for example, the active
shell is injected.

@ Inject
@Named(IServiceConstants.ACTIVE_SHELL)
Shell shell;

Furthermore, it is possible to store custom objects with a name in context. We will describe this
in more detail in a following chapter of this tutorial.

@Optional

Of course, it is always possible that a context does not contain a matching object that can be
injected. In this case, the dependency injection mechanism of Eclipse 4 displays an error. More
specifically, an exception is thrown. A class that needs the missing parameter in a constructor, a
method or as fields that can not be injected, will not be initialized correctly.

However, some parameters are not needed in every case, for example, the active selection of
specific services. For these parameters, the annotation @Optional can be used. If an object
marked with @Optional is not available in the context, null will be injected. In this case, prior to
access to the injected object in your custom code, it has to be checked, if it is null.

@Active

In certain use cases, it is necessary to access not only a specific type of an element from the
application model, but an object form the active context. With the annotation @Active, the
currently active context is used for the injection. Context usually get activated, when the
corresponding Ul element gets activated. The following example injects the part of the active
context, which is typically also the active part.

@Inject
public void save (@Active MPart part) {
partService.save (part);

}

Injecting Objects

In the simplest case, the injection is triggered via the @Inject annotation. It can be placed prior
to methods, before the constructor or class fields. If you mark a method or constructor with
@Inject, all their parameters are injected. Without further information with @Named, the lookup
for the right object will be according to the corresponding type of the parameter or field. There
are a number of additional annotations, which control the exact time of the injection, but they
behave in

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 33/54

A Eclipsedource

principle the same as @ Inject. We will describe the additional annotations in another part of this
tutorial.

A crucial role is played by the order of injection. When a class is instantiated, for example, a
view, the constructor and its parameters are injected first. Immediately following, the relevant
fields are

injected. As a consequence, fields can not be accessed in the constructor. Parameters of
methods are injected when these methods are called by the framework. All methods marked
with @Inject are also called to initialize the object after the constructor and the fields. If the
injected object changes in context, it is re-injected. Methods are therefore called again, when
the injected values change.

Constructors

Constructors should include parameters that are essential for the existence of an object. Any
unnecessary parameter limits the testability and as well, the reusability of an object. Particularly
the object initializations should be done in separate methods that are called after the
constructor. A typical example of dependency injection in the constructor is the injection of the
Parent composite of a view, as has been described previously in this tutorial. Since views are
initialized in the context of a part of the application model, the specification of the type
composite in this case is clear and no additional annotations are required.

@ Inject
public void MyView (Composite parent) {
//Implement the View placed on the Parent

}

Fields

After the constructor of a class, the class’ fields are injected. A typical application is the injection
of services that will be available globally in the class. An example of this is the Selection Service
to set the current selection of a view. As services usually exist only once per application, as in
this case, the indication of the type is sufficient.

@ Inject
ESelectionService service;

service.setSelection (mySelection);

Injected fields must not be marked as final, as they can potentially be re-injected. Final fields
must be explicitly set through the constructor and its injection.

Methods

After the constructor and the fields, while initializing a class, all annotated methods (with
@Inject) are sequentially called. This also applies to methods that have no parameters. If one of

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 34 /54

A Eclipsedource

the injected parameters of a method changes afterwards in the context, the method will be
called again with the new parameters. A good example of an injection in methods is the current

selection, on which you often want to respond in a view or in a handler. In this case, however,
specifying the type of the parameter is not enough, the parameter must also be marked with the
annotation @Named. The following example also uses @Optional because, for example, when
the application is started no selection will be in the context. In the following example, the
injection is repeated every time and the method is called again when the selection changes.

@ Inject

public void setSelection (@ Named (IServiceConstants.ACTIVE_SELECTION) @ Optional
MyObject myObiject) {

//Process Selection

}

Conclusion

Dependency injection reduces dependencies on singletons and framework interfaces. Objects
define exactly which parameters or services they use. This also makes testing
comparativelyeasy. The use of additional annotations allows more precise specification of
objects to be injected, for example, marking certain parameters as optional.

A next part of the series is dedicated to even more details about dependency injection. We will
cover additional annotations such as @PreDestory and @PostConstruct. With these, you can
instruct the framework, at which time certain methods should be invoked without creating a
direct dependency on particular framework classes.

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 35/54

A Eclipsedource

Behavior Annotations

In the previous parts of this tutorial series, we described how to create an application model, link
those elements to implementations and how to extend the application model. This tutorial and
all other parts of the series are now available as a downloadable PDEF. In the last part of this
tutorial, we provided details about dependency injection. However, we focused on how to
influence which parameter is injected at a certain place. In many cases, it is additionally
important to specify when exactly parameters are injected, or more precisely, when certain
methods of a class are called by the framework. Eclipse 4 uses annotations for this purpose.
This tutorial describes the most important annotations used in Eclipse 4.

When To Inject?

The annotation @Inject, in combination with @Named and @Optional, described in a previous
part of this tutorial, is sufficient to control dependency injection for constructors and fields. In
both cases, the point in time when objects are injected is clear (instantiation of the class). When
methods are marked only with @Inject, these methods are called once after the class is
initialized and again every time a parameter changes in the context. However, there are many
use cases wherein the developer may want to react to certain events, e.g., if a view gets the
focus or if an object is disposed. The Eclipse 3.x interfaces defined methods for these events,
e.g., setFocus(), that were called by the framework when a certain event was triggered. In
Eclipse 4, views are POJOs, and methods can be named arbitrarily. Therefore, methods that
need to be called by the framework at a certain point in time must be marked with
corresponding annotations, e.g., @Focus. All the described annotations include the dependency
injection as @Inject does. That means that if a method is marked with any of the annotations
below, all parameters of the method will be injected without an explicit addition of @Inject.

@PostConstruct and @PreDestroy

In many cases, objects need additional initialization after the constructor has been called. This
is especially relevant if fields are used. Since fields are injected after the constructor is called,
any initialization dependent on fields cannot be done in the constructor.

A typical task for an initialization of an object is the registration of listeners. These listeners
typically need to be unregistered if the object is not needed anymore. Eclipse 3.x interfaces
typically provided methods such as init() and dispose() for this use case. Eclipse 4 uses two
standard annotations defined in javax.annotation: @PostConstruct and @PreDestroy.

A method annotated with @PostConstruct is called after a class is initialized with its constructor
and after all fields have been injected. A method annotated with @PreDestroy is called when an
object is not needed anymore, e.g., when the corresponding view is closed but before the object
is destroyed. As mentioned before, all annotations allow the use of additional parameters in
these methods, but that is not mandatory. The following code example shows a typical use
case. A service is injected as a field and can therefore not be accessed in the constructor. The

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 36/54

A Eclipsedource

@PostConstruct method is used to register a listener on the service, the @PreDestroy method
to deregister the listener.

@Inject
MyService service;

@PostConstruct
public void postConstruct() {
service.addListener(this);

}

@PreDestroy
public void preDestroy() {
service.removelistener(this);

}

@PostConstruct and @PreDestroy can be used for all classes, which are initialized by the
framework or manually using the Injection Factory.

@Focus

For visual elements, e.g., parts, there are additional events to which an implementation should
react. A method marked with @Focus is called when the corresponding Ul element receives the
focus. In SWT applications, the focus must be forwarded to the central SWT element, e.g., a
text field or a tree. If the implementation of a view contains several SWT controls, the developer
has to choose a control, typically the first text field if it is a form editor.

@Focus
public void onFocus() {
text.setFocus();

}

@Persist

The annotation @Persist marks a method to be called if a save is triggered on a part. For
example, if the parts represent a text editor, the content of the text control is saved into a file.

@Persist
public void save(){
//save the context of the part

}

The method is typically called from another place than the part itself, e.g., from a handler. The
EPartService provides helper methods to save a specific part or all parts that are dirty:

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 37 /54

A Eclipsedource

@Execute
public void execute(@Named(IServiceConstants.ACTIVE_PART
MPart part,EPartService partService) {

partService.savePart(part, false);

}

@PersistState

A method marked with @PersistState is called before an object is disposed and before the
method marked with @PreDestroy is called. The purpose of this method is to persist the latest
state of an element if required. If the method is a view, the latest input by the user could be
stored for convenience.

@Execute and @CanExecute

There are two additional annotations used especially for handlers, @Execute and
@CanExecute. @Execute marks the method to be executed if the handler itself is executed.
@CanExecute marks the method responsible for the enable state of the handler. Therefore, the
@CanExecute method needs to return a Boolean value, which tells the framework whether the
implementation action is currently available or not. As a consequence, Eclipse 4 will enable or
disable all menu and toolbar items linked to this handler. As for all annotations, all required
parameters are injected.

However, the annotation @CanExecute works quite differently than other annotations. It is not
called on a certain event or on a change of one parameter in the context. In fact, in version 4.4,
it is called continuously and is timer-based, so it is important to not spend too much execution
time within this method.

A very common example for the implementation of a @CanExecute method is a check for the
current selection, the active part or the active perspective. The following example checks
whether

the current selection is of a certain type and enables the handler if it is. The @Execute method
invokes a certain action on the current selection:

@CanExecute
public boolean canExecute(@Named(IServiceConstants.ACTIVE_SELECTION)
@0Optional Object selection) {
if (selection!=null && selection instanceof MyObject)
return true;
return false;

}

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 38/54

A Eclipsedource

Lifecycle Annotations
Finally, Eclipse 4 offers the possibility to hook into the lifecycle of a running application. To do
this, a lifecycle handler needs to be registered as a property of the registered application:

<property name="lifeCycleURI"
value="platform:/plugin/helloworld/helloworld.LifecycleHandler">
The implementation of the lifecycle handler itself is a POJO. It supports the following specific
annotations:
@PostContextCreate
Is called after the application’s context has been created. Can be used to add or remove objects
from the context.
@ProcessAdditions and @ProcessRemovals
Allows the modification of the application model before it is passed to the renderer that will
display the application on screen. Allows the addition and removal of application model
elements before the application is actually shown.
@PreSave
Is called before the application model is persisted. Allows the modification of the model before
saving it.

Conclusion

Behavior annotations of Eclipse 4 allow the specification of the precise point in time when
objects are injected. Annotated methods can require parameters but don’t have to. For example,
a method annotated with @Focus often does not require any parameters. In this case, it is more
important that a focus method is called at a certain point in time when the corresponding Ul
element gets the focus. Some annotations, such as @Inject, @Named, @PostConstruct and
@PreDestroy, are Java standards. Additional annotations, such as @Optional or @Persist, are
specific for Eclipse 4.

To get an overview of the source of the available annotations, the following list shows all
described annotations with the bundle defining them. If you use any of these annotations, you
will need a dependency or a package import to these bundles.

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 39/54

A Eclipsedource

@Active org.eclipse.e4.core.contexts
@Creatable org.eclipse.e4.core.di.annotations
@CanExecute org.eclipse.e4.core.di.annotations
@Execute org.eclipse.e4.core.di.annotations
@Inject javax.inject

@Named javax.inject

@Optional org.eclipse.e4.core.di.annotations
@Persist org.eclipse.e4.ui.di

@PersistState org.eclipse.e4.ui.di

@PostConstruct javax.annotation

@ProcessAdditions org.eclipse.e4.ui.workbench.lifecycle
@ProcessRemovals org.eclipse.e4.ui.workbench.lifecycle
@PostContextCreate org.eclipse.e4.ui.workbench.lifecycle
@PreDestroy javax.annotation

@PreSave org.eclipse.e4.ui.workbench.lifecycle

© 2016 Dres. Jonas Helming and Maximilian Kogel - EclipseSource Munich

40/ 54

A Eclipsedource

Services

In the previous parts of this tutorial series, we described how to create an application model, link
those elements to implementations, how to extend the application model, details about
dependency injection and how to use behavior annotations. This tutorial and all other parts of
the series are now available as a downloadable PDF.

In the last two parts of this tutorial, we described a lot of details about dependency injection.
However, dependency injection is only a technique; the major goal is to get access to certain
objects you want to use in a class. As we learned in part 4 of the tutorial, one type of objects
you can retrieve using dependency injection are services. Services play a very central role in
Eclipse 4. They provide framework features such as managing a selection or opening a
perspective. In this

part of the tutorial, we described the three most important Eclipse 4 services: the selection
service (ESelectionService), the model service (EModelService) and the part service
(EPartService). Using these services also serves as a blueprint for how to use any other
services in Eclipse 4, too.

Why Services?

One of the key strengths of a framework such as Eclipse has always been the possibility of
reusing of a lot of framework functionality. That means Eclipse as a framework already
implements a lot of features typically required in applications. Therefore, developers don’t have
to reinvent the wheel and can focus on implementing specific and valuable parts of an
application. In Eclipse 3.x, a lot of these framework features were provided in the workbench
API and in the use of singletons. For example, it was possible to retrieve the current selection of
an application using this line of code:

PlatformUl.getWorkbench().getActiveWorkbenchWindow().getSelectionService().getSelection();

This approach had several drawbacks. Since we described the issues in more detail in part 5 of
this tutorial, here we will recap only the three major problems:

e You need to know exactly where in the workbench APl a certain method can be
accessed. There is no real separation of concerns, so you basically need to know the
complete workbench API. This high level of complexity has always been a problem,
especially for beginners.

e ltis very difficult to create a mock for a certain object of the workbench, which is required
for testing.

e It is difficult, sometimes even impossible, to replace an existing implementation with an
own one if you want to adapt or extend the default behavior of the framework.

Those are the main reasons why Eclipse 4 has chosen a different concept of providing
framework functionality. Instead of providing one big API, framework features have been split
into a number of services. Every Eclipse 4 service has a specific focus, e.g., managing the

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 41/54

A Eclipsedource

selection or dealing with parts and perspectives. All services can be accessed using
dependency injection. The following line of code injects the Eclipse 4 selection service as a
field:

@Inject
ESelectionService selectionService;

See parts 4 and 6_for more details about dependency injection.

To be fair, the idea of using services is nothing new and nothing specific to Eclipse 4. However,
Eclipse 4 has really adapted the concept of a service-oriented architecture. This provides
mitigations to the above mentioned problems:

e As services can be injected, you only need to know which service you want to use, more
precisely its Java interface, not where it comes from. This is far simpler since you can
search for something you want to do, e.g., “managing a selection” and you will very likely
find the selection service. Additionally, you only have to deal with the API of services you
want to use, so there is a good separation of concerns.

e One focus while developing the services for Eclipse 4 was to create an easy to use and
cleaner API than 3.x. The 3.x API has grown over the years and the gathered
experience was used to design the API for Eclipse 4.

e Services can be replaced, even during runtime. That allows to create mock
implementations for testing, as well as replacing existing services with custom
implementations.

However, not all 3.x functionality has been transformed into Eclipse 4 services. The platform
team has obviously focused on the most important things. Some features of Eclipse 3.x don’t
even have to be provided explicitly for Eclipse 4, since things such as the application model
already provide them or at least make it much easier to implement them. In this tutorial, we
focus on the most important services of Eclipse 4. The list is obviously not complete; we plan to
add more in the future. If you would like a certain service to be described in more detail, please
feel free to get in contact with us.

Selection Service (ESelectionService)

The selection service is responsible for managing the active selection of an application. The
selection of an application is typically an object a user can select from a view, e.g., a file for a
file browser or an e-mail in an e-mail application. There are two different users of the selection
service. Selection providers are elements that set the active selection. Selection providers are
typically Ul elements that allow the user to select an element, e.g., a tree viewer. The selection
is then forwarded to the selection service. Selection consumers are interested in the element
currently selected in an application. For example, the enabling of a handler can be dependent
on the current selection. Thus, the enabling of the handler “Export File” could only be enabled if
the current selection is a file.

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 42 /54

A Eclipsedource

Selection Selection
Provider Consumer
set selection get selection
ESelectionService

Eclipse 3.x vs. Eclipse 4 - Which Platform to use?

In the previous parts of this tutorial, we introduced the Eclipse 4 Application Platform including
its features such as the Application Model, Dependency Injection, and the available services. All
of those features provide great support for developing applications and in general Eclipse 4
does many things better than Eclipse 3.x. However, that does not mean that Eclipse 3.x, more
precisely

its APl is decrepit. There are tons of existing plugins out there based on this APl and they are
still actively developed. The implementation of Eclipse 4 does not mean, that the 3.x APl is no
longer useful. This is especially true in the tools area, many of them, e.g. the java development
tools, are and will probably stay on the 3.x API for a long time. Therefore, before you start an
application, you will have to deal with the question of which API it is based. In the following
sections, | will describe the most important options in detail.

Option 0 - Eclipse 3.x

This would mean you use an old version of the Eclipse platform (highest one is 3.8). Those
versions do not contain any components from Eclipse 4. This option is only valid for existing
tools, which are not actively developed anymore. There are no updates nor service releases for
the 3.x stream anymore. Sooner or later, you will need to update to option 1, e.g. if the
contained SWT version no longer supports your windowing system or if you need other fixes.
The only alternative is to get Long Term Support for your Eclipse 3.x version. New projects
should not use 3.x. We will not describe this option in more detail.

Option 1 - 3.x Compatibility Layer (3.x APIl) on Eclipse 4.x

This is the option used by most tools and applications which existed before Eclipse 4. The
compatibility layer enables 3.x applications to run on the new Eclipse 4 platform without any
code adaptation. Most existing projects use this option as a first step towards Eclipse 4. Besides
the easy migration, you can still use all existing components and frameworks, even if they are
not migrated to e4. Finally, your application stays backwards compatible, meaning it can still be
run on 3.x

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 43 /54

A Eclipsedource

To ease migration, the compatibility layer provides the 3.x workbench API and translates all
calls into the programming model of e4. In the background, it transparently creates an
Application Model. For example, if the 3.x application registers a 3.x view using an extension
point, the compatibility layer will create a Part for this view. One important criteria for existing
applications to work well on the compatibility layer is that they should not use any internal
workbench API. Aside from this, there should be no source code changes required. However,
you will probably need to adapt the product or run a configuration of the application. Eclipse 4
needs additional plugins to work, and as there are no direct dependencies, this will not be
automatically discovered. These are the plugins you will need to add:

org.eclipse.equinox.ds : The OSGi plugin enabling declarative services
org.eclipse.equinox.event: The OSGi event broker

org.eclipse.equinox.util: Required by the first two

org.eclipse.e4.ui.workbench.addons.swt: Enables features such as minimizing and maximizing
parts.

We have mentioned before, that “there should be no source code changes required”. However,
whether this is true, depends on the project and more precisely on the usage of the workbench
API. In general, if you only rely on official API, your code should compile well and the basic
functionality should generally work. However, there are things in Eclipse 4 which behave a little
different than in Eclipse 3.x. The reason is obviously the reimplementation of all internals. These

differences could be slight changes in the look and feel or the behavior, which implicitly worked
on 3.x, but is not really guaranteed in the API. The only way to find out about those issues is to
try to test an existing application based on the compatibility layer. Sometimes it is required to fix
some remaining minor issues on the Eclipse 4 platform to fully support your application. It is
impossible to estimate the required effort for migrating an existing application on the
compatibility layer, without evaluating it. Some applications run without any adaptations, for
others you need a few days or even weeks of work. For supporting your migration project, we
offer developer support and sponsored development as professional services.

An obvious disadvantage of using the compatibility layer is that you won’t benefit from the new
concepts, such as the application model, dependency injection and annotations provided by e4.
Although, some other improvements will still work, such as CSS styling.

Option 2 - 3.x Compatibility Layer on Eclipse 4.x with some e4 components
There can be good reasons to keep an application on the compatibility layer, meaning the 3.x
API. This is especially true for existing applications, as it requires almost no migration effort.
Additionally, the Eclipse IDE itself is still based on the 3.x API, so if you extend it, you
automatically need to use the compatibility layer.

However, it would still be useful to use some of the benefits of the Eclipse 4 programming
model, especially for newly developed components. Additionally, it would be nice, if components
could be developed in a way such that they can be used in a 3.x as well as in a pure Eclipse 4
application.

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 44 /54

A Eclipsedource

There are ways to integrate Eclipse 4 components into an 3.x application based on Eclipse 4.x.
That enables you to use the Eclipse 4 benefits for newly developed components and still reuse
all existing plugins. More details are described in the section “Soft Migration to Eclipse 4.x”

This approach allows you to develop new parts of the application using the benefits of the
Eclipse 4 programming model and as well as reuse all existing components. Further, the views
developed in this way can be integrated into any pure e4 application without any adaptations.

Option 3 - A “pure” or “native” Eclipse 4 Application

The third option, primarily interesting for new projects, is to build a pure Eclipse 4 (e4)
application without any compatibility layer. Any existing parts of an application should be
completely migrated to e4. The major disadvantage of this option is that many existing
components and frameworks cannot be reused. This affects components doing Ul contributions
such as Views. Examples would be the Error Log, the Console View, or existing editors. To use
them in an e4 application they would have to be migrated to e4 as well. However, components
without any workbench contributions should work in a pure e4 application. The advantage of this
approach is obviously that you will have very clean design and you benefit from all the concepts
in Eclipse 4, such as the Application Model, dependency injection, and the e4 services.

Option 4 - A “pure” Eclipse 4 Application integrating some 3.x components
In this option you would develop a pure Eclipse 4 application and reuse some 3.x components.
Components without workbench dependencies can typically easily be integrated into a pure e4
application. Components with workbench dependencies have to be adapted. Depending on the

component, this adaptation is often not much effort. Even Ul components can often be easily
reused or adapted to work with e4. However, this needs to be evaluated individually for each
component. The good news is that if you rely on open source components, everybody is able to
adapt those. To help you with evaluating and adopting existing components to Eclipse 4, we
offer developer support and sponsored development as a professional services.

Conclusion

In the end, when and how to migrate to e4 is still one of those “it depends...” decisions.
Probably the most important criteria is the number of existing components and the number of
reused third-party components. If you use many existing components you require the 3.x API,
and you should probably go for option 1 or 2. If you do not use a lot of 3.x based components,
or if all of those components can easily be migrated, you should go for option 3 or 4.

If you have additional options for migrating or mixing the two technologies, let me know and |
will gladly add it to this post.

© 2016 Dres. Jonas Helming and Maximilian Koégel - EclipseSource Munich 45/54

A Eclipsedource

Soft migration from 3.x to Eclipse 4 (e4)

This tutorial describes how to do a soft migration to the Eclipse 4 (e4) programming model. The
basic goal of the tutorial is to enable development using the new concepts such as Dependency
Injection, and Annotations, but without first requiring a complete application migration. So the
application is still based on the compatibility layer, but it includes some components following
the Eclipse 4 programming model. As the compatibility layer is used, all existing plugins as well
as frameworks which require the 3.x API can still be used as before. However, developing new
Ul components for an application following the e4 programming model has two major
advantages:

1. The new components are POJOs and therefore very flexible, testable, and reusable.

2. If the application is migrated to the Eclipse 4 Application Platform, these components are
ready to be used in e4.

Interestingly, the first point is worth taking advantage of, even if you are sure that Eclipse 4 will
not be an option in the near future. The idea is actually pretty simple and isn’t really new at all.
There are basically two options for how to follow these concepts: with or without dependency
injection. To explain the basic idea, we will first introduce the manual approach, without
dependency injection and, in the subsequent section, introduce the Eclipse 4 like approach with
dependency injection.

POJOs in 3.x (without Dependency Injection)

The basic concept is to make a clear separation between the code which you develop for a
custom application and the code that binds your component into the Eclipse workbench. The
second component depends on the workbench API and is therefore specific to a certain Eclipse
version, i.e. 3.x or 4.x. The first group of code does not need to be specific to an Eclipse version
and in fact, doesn’t need to know about the workbench at all. Therefore, it is easy to test and
reusable in any Eclipse version. In the following section we explain the basic idea based on the
example of a handler implementation.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 46 / 54

A Eclipsedource

3.X specific code
3Xinterface

execute()

YourWrapper YourPOJO

execute() execute()

A good example for the separation is the implementation of a handler.

To implement a handler in Eclipse 3.x that is bound to a command, you need to implement the
interface IHandler. Let’s look at a typical example handler in 3.x, which does something with the
current selection. In this example, the handler checks if the current selection is of type
“MailAccount”. If this is true, the handler checks if the user is already logged in and
subsequently sends and receives mails.

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 47 /1 54

A Eclipsedource

public Object execute(ExecutionEvent event) throws ExecutionException {
ISelection currentSelection = HandlerUtil.getCurrentSelection(event);
if (currentSelection instanceof IStructuredSelection) {
Object firstElement = ((IStructuredSelection) currentSelection)
.getFirstElement();
if (firstElement instanceof MailAccount) {
MailAccount account = (MailAccount) firstElement;
if(laccount.isLoggedIn()){
account.login();
}
account.sendMails();
account.recieveMails();

}
}

return null;

There are three major problems with this design: boilerplate code, lack of testability, and lack of
re-usability. Let's imagine that you would like to write a test case for this handler. You need to
manually create an ExecutionEvent and also make sure that the HandlerUtil is available in your
test environment. Since the selection in this case is not a plain field, but rather a property, you
would need to look at the implementation of HandlerUtil.getCurrentSelection() to find out how to
properly prepare your Mock ExecutionEvent. Even if you manage to create a test case, let's
imagine you want to trigger a timer-based mail synchronization, meaning that you want to
directly call the execute method. In order to re-use the handler, you would again need to create
an ExecutionEvent. If the handler is within your control, you will probably refactor at this time.
However, the handler might be within a framework where you cannot refactor.

The solution for this is pretty simple: we split the code into two methods. The first will deal with
all workbench specific parts, i.e. unpacking the selection. The second method will execute the
business logic itself and can, in this case, be static.

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 48 /54

A Eclipsedource

public Object execute(ExecutionEvent event) throws ExecutionException {
ISelection currentSelection = HandlerUtil.getCurrentSelection(event);
if (currentSelection instanceof IStructuredSelection) {
Object firstElement = ((IStructuredSelection) currentSelection)
.getFirstElement();
if (firstElement instanceof MailAccount) {
synchronizeAccount((MailAccount) firstElement);
}
}

return null;

}

public static void synchronizeAccount(MailAccount account) {
if(laccount.isLoggedIn()){
account.login();
}
account.sendMails();
account.recieveMails();

}

With this design it is much easier to write a test case for the second method. Additionally, the
method can be easily called from anywhere else, e.g. triggering the timer-based
synchronization. Moreover, the code is easier to understand. As a next step, the second method
can be moved out of the handler, for example, into a plugin which does not have any workbench

dependencies.

Applying the same design pattern to views will result in the same advantages. We have one
class implementing the workbench specific parts and one class which can be a POJO. In the
following example, the WorkbenchView does all workbench specific parts, including handling

the current selection, while the POJOView is completely independent.

public class WorkbenchView extends ViewPart {
private POJOView pojoView;

public WorkbenchView() {
pojoView = new POJOView();
}

@Override

public void createPartControl(Composite parent) {
pojoView.createPartControl(parent);

© 2016 Dres. Jonas Helming and Maximilian Kogel - EclipseSource Munich

49 / 54

A Eclipsedource

ISelectionService service = (ISelectionService) getSite().getService(

ISelectionService.class);

service.addSelectionListener(new ISelectionListener() {

@Override

public void selectionChanged(IWorkbenchPart part,
ISelection selection) {

if (selection instanceof IStructuredSelection) {

Object firstElement = ((IStructuredSelection) selection)

.getFirstElement();
pojoView.setlnput(firstElement);

@Override
public void setFocus() {
pojoView.setFocus();

}

}
public class POJOView {

private Text text;

public void createPartControl(Composite parent) {
text = new Text(parent, SWT.NONE);

}

public void setFocus() {
text.setFocus();

}

public void setinput(Object object) {
if(object!=null){
text.setText(object.toString());

}

}

}

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich

50/ 54

A Eclipsedource

Again the POJOView is now very easy to understand, test and re-use. As an example, the
POJOView could be embedded into a JFace Wizard. Until this point, we have not used any
Eclipse 4 specific concepts, nor any dependency injection; the pattern can be used in plain 3.x.
It is a very general pattern which we recommend to follow in order to make your custom
components more reusable and testable.

As the wrapper classes (the one which implements the 3.x interface) always look pretty similar,
it would be easy to provide a few generic implementations. We will introduce such a generic
implementation later in this tutorial that uses dependency injection.

POJOs in 3.x (with Dependency Injection)

If you separate workbench specific code and custom components as POJOs, as shown before,
components are easier to reuse and to test, even in 3.x. However, there are still two
disadvantages compared to developing a component for the Eclipse 4 Application Platform:

1. The wrapper has to be manually implemented

2. The implementation of the component cannot use dependency injection and therefore, is not
ready to be used in Eclipse 4.

Once your application is running on an Eclipse 4.x version there are solutions for this even if
you still use the 3.x APl (compatibility layer). That means, you can implement your POJO
component as before, but additionally, you can use dependency injection and do not need to
implement a wrapper to connect your POJO with the workbench.
There are three ways to connect POJO views using dependency injection into a compatibility
layer based application:

1. Use the 3.x extension point (only available for views)

2. Use fragments or processors

3. Use the 3.x e4 bridge from the tools project

The first option is available only for views since Luna. The existing 3.x extension point has been
extended by the possibility to register “e4views”. This entry in the default extension point does
not point to an implementation of IViewPart (3.x interface to be implemented by view), but it
points to a POJO class. This POJO class can use all the Eclipse annotations for dependency
injection. The following example shows the two extensions available to register views. The first
one is a tranditional 3.x View implementing IViewPart. The second extension registers a POJO
implementation using dependency injection. It will be added to the workbench, just like any
other view.

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 51/54

A Eclipsedource

<extension
point="org.eclipse.ui.views">

<view
name="View"
class="myrcpapp.3xViewlmplementation"
id="myRCPApp.view">

</view>

<edview
class="myrcpapp.POJOViewlmplementation"
id="myRCPApp.e4view"
name="E4View"
restorable="true">

</edview>

</extension>

The second option is to use processors and fragments to add elements to the application model
created by the compatibility layer. This option is very appealing because not only can you use
dependency injection for the implementation, but you can also model the things you want to
contribute as elements in the fragment. However, there are currently still some timing problems.
When processors and fragments are being processed, the compatibility layer has not yet
created the complete application model. (See this bug report.
(https://bugs.eclipse.org/bugs/show_bug.cgi?id=376486). Therefore, this option might work for
handlers and views, but currently it doesn’t work for editors or things which extend perspectives
defined by the IDE.

The third solution is provided by the 3.x e4 bridge from the e4 tools project. The plugin basically
provides generic wrapper classes, which can be used in a 3.x application. The wrapper classes
allow the definition of a second class, which is a POJO, and implements the corresponding
component. The solution follows the same pattern we describe before, but works in a generic
way and supports dependency injection. At the time of writing, implementations for Views,
Editors, and Handlers are available. To create the 3.x workbench wrapper, one simply inherits
from the respective type, e.g. from DIViewPart to implement a View. The wrapper class is
almost empty. It only has to specify the POJO class that implements the component.

public class ExampleViewWrapper extends DIViewPart{
public ExampleViewWrapper() {
super(ExampleView.class);

}

}

This class is now registered using the view’s extension point as is usual in 3.x (not with the
previously mentioned e4view extension).

© 2016 Dres. Jonas Helming and Maximilian Kogel - EclipseSource Munich 52 /54

A Eclipsedource

The implementation of the view itself can be a POJO and dependency injection can therefore be
used. In addition to being quite convenient to develop, in case the component is migrated to e4,
it is ready to be used without any adaptation. In this case, you can remove the wrapper and the
extension to integrate the POJOView into the application model. As you can see, the view can
use all features of dependency injection, including injection into the current selection

public class ExampleView {

private Label label;

@Inject

public ExampleView(Composite parent){
label = new Label(parent, SWT.NONE);
label.setText("Hello World");

}

@Inject

public void setinput(@Optional @Named(IServiceConstants. ACTIVE_SELECTION)Object
input){

if(input==null){

return;

}

label.setText(input.toString());

}

}

To understand how this works, we look at the simplest case, a wrapper for a Handler. To
simplify the example, we will ignore the annotation @CanEnable for now. The DIHandler needs
to implement the 3.x IHandler interface allowing it to be registered with the handler extension
point, as is common in 3.x. Additionally, the DIHandler needs to know about the POJO class
that it wraps. This POJO class should be instantiated by the wrapper. To do this, we use the e4
ContextlnjectionFactory. As the application is running on the compatibility layer, we can retrieve
the EclipseContext as a service and use it to create the class. This way, all fields expected by
the Handler are being injected (as is standard in e4).

© 2016 Dres. Jonas Helming and Maximilian Kégel - EclipseSource Munich 53/54

A Eclipsedource

public class DIHandler extends AbstractHandler {

private Class clazz;
private C component;

public DIHandler(Class clazz) {

this.clazz = clazz;

IEclipseContext context = getActiveContext();

component = ContextlnjectionFactory.make(clazz, context);

}

private static IEclipseContext getActiveContext() {

|IEclipseContext parentContext = (IEclipseContext) PlatformUl.getWorkbench().getService(
|IEclipseContext.class);

return parentContext.getActiveLeaf();

}

The only missing piece now is the implementation of the execute method. It simply uses the
InjectionFactory again to invoke the method of the POJO, which is marked with @Execute:

public Object execute(ExecutionEvent event) throws ExecutionException {
return ContextlnjectionFactory.invoke(component, Execute.class,
getActiveContext());

}

This DIHandler is not very complex and allows wrapping POJO handlers into the 3.x workbench.

Conclusion

This part of the tutorial described different approaches for a soft migration from 3.x to the
Eclipse 4 programming model. We started with the concept of separating the implementation of
custom Ul components and workbench specific classes. This improved the re-usability and the
testability of the components. It is a pattern you should follow, even if you never want to migrate
to Eclipse 4. It can be used with or without dependency injection. When using dependency
injection, there are three ways to integrate the POJOs into the 3.x workbench. For views, the 3.x
extension point allows you to directly register them. For other elements, you will need to use the
3.x e4 bridge provided by the e4 tools or fragments.

© 2016 Dres. Jonas Helming and Maximilian Kbégel - EclipseSource Munich 54 /54

