forked from isaac-sim/IsaacGymEnvs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
anymal_terrain.py
687 lines (583 loc) · 37.4 KB
/
anymal_terrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
# Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import os, time
from isaacgym import gymtorch
from isaacgym import gymapi
from .base.vec_task import VecTask
import torch
from typing import Tuple, Dict
from isaacgymenvs.utils.torch_jit_utils import to_torch, get_axis_params, torch_rand_float, normalize, quat_apply, quat_rotate_inverse
from isaacgymenvs.tasks.base.vec_task import VecTask
class AnymalTerrain(VecTask):
def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render):
self.cfg = cfg
self.height_samples = None
self.custom_origins = False
self.debug_viz = self.cfg["env"]["enableDebugVis"]
self.init_done = False
# normalization
self.lin_vel_scale = self.cfg["env"]["learn"]["linearVelocityScale"]
self.ang_vel_scale = self.cfg["env"]["learn"]["angularVelocityScale"]
self.dof_pos_scale = self.cfg["env"]["learn"]["dofPositionScale"]
self.dof_vel_scale = self.cfg["env"]["learn"]["dofVelocityScale"]
self.height_meas_scale = self.cfg["env"]["learn"]["heightMeasurementScale"]
self.action_scale = self.cfg["env"]["control"]["actionScale"]
# reward scales
self.rew_scales = {}
self.rew_scales["termination"] = self.cfg["env"]["learn"]["terminalReward"]
self.rew_scales["lin_vel_xy"] = self.cfg["env"]["learn"]["linearVelocityXYRewardScale"]
self.rew_scales["lin_vel_z"] = self.cfg["env"]["learn"]["linearVelocityZRewardScale"]
self.rew_scales["ang_vel_z"] = self.cfg["env"]["learn"]["angularVelocityZRewardScale"]
self.rew_scales["ang_vel_xy"] = self.cfg["env"]["learn"]["angularVelocityXYRewardScale"]
self.rew_scales["orient"] = self.cfg["env"]["learn"]["orientationRewardScale"]
self.rew_scales["torque"] = self.cfg["env"]["learn"]["torqueRewardScale"]
self.rew_scales["joint_acc"] = self.cfg["env"]["learn"]["jointAccRewardScale"]
self.rew_scales["base_height"] = self.cfg["env"]["learn"]["baseHeightRewardScale"]
self.rew_scales["air_time"] = self.cfg["env"]["learn"]["feetAirTimeRewardScale"]
self.rew_scales["collision"] = self.cfg["env"]["learn"]["kneeCollisionRewardScale"]
self.rew_scales["stumble"] = self.cfg["env"]["learn"]["feetStumbleRewardScale"]
self.rew_scales["action_rate"] = self.cfg["env"]["learn"]["actionRateRewardScale"]
self.rew_scales["hip"] = self.cfg["env"]["learn"]["hipRewardScale"]
#command ranges
self.command_x_range = self.cfg["env"]["randomCommandVelocityRanges"]["linear_x"]
self.command_y_range = self.cfg["env"]["randomCommandVelocityRanges"]["linear_y"]
self.command_yaw_range = self.cfg["env"]["randomCommandVelocityRanges"]["yaw"]
# base init state
pos = self.cfg["env"]["baseInitState"]["pos"]
rot = self.cfg["env"]["baseInitState"]["rot"]
v_lin = self.cfg["env"]["baseInitState"]["vLinear"]
v_ang = self.cfg["env"]["baseInitState"]["vAngular"]
self.base_init_state = pos + rot + v_lin + v_ang
# default joint positions
self.named_default_joint_angles = self.cfg["env"]["defaultJointAngles"]
# other
self.decimation = self.cfg["env"]["control"]["decimation"]
self.dt = self.decimation * self.cfg["sim"]["dt"]
self.max_episode_length_s = self.cfg["env"]["learn"]["episodeLength_s"]
self.max_episode_length = int(self.max_episode_length_s/ self.dt + 0.5)
self.push_interval = int(self.cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5)
self.allow_knee_contacts = self.cfg["env"]["learn"]["allowKneeContacts"]
self.Kp = self.cfg["env"]["control"]["stiffness"]
self.Kd = self.cfg["env"]["control"]["damping"]
self.curriculum = self.cfg["env"]["terrain"]["curriculum"]
for key in self.rew_scales.keys():
self.rew_scales[key] *= self.dt
super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render)
if self.graphics_device_id != -1:
p = self.cfg["env"]["viewer"]["pos"]
lookat = self.cfg["env"]["viewer"]["lookat"]
cam_pos = gymapi.Vec3(p[0], p[1], p[2])
cam_target = gymapi.Vec3(lookat[0], lookat[1], lookat[2])
self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target)
# get gym GPU state tensors
actor_root_state = self.gym.acquire_actor_root_state_tensor(self.sim)
dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim)
net_contact_forces = self.gym.acquire_net_contact_force_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_net_contact_force_tensor(self.sim)
# create some wrapper tensors for different slices
self.root_states = gymtorch.wrap_tensor(actor_root_state)
self.dof_state = gymtorch.wrap_tensor(dof_state_tensor)
self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0]
self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1]
self.contact_forces = gymtorch.wrap_tensor(net_contact_forces).view(self.num_envs, -1, 3) # shape: num_envs, num_bodies, xyz axis
# initialize some data used later on
self.common_step_counter = 0
self.extras = {}
self.noise_scale_vec = self._get_noise_scale_vec(self.cfg)
self.commands = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) # x vel, y vel, yaw vel, heading
self.commands_scale = torch.tensor([self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], device=self.device, requires_grad=False,)
self.gravity_vec = to_torch(get_axis_params(-1., self.up_axis_idx), device=self.device).repeat((self.num_envs, 1))
self.forward_vec = to_torch([1., 0., 0.], device=self.device).repeat((self.num_envs, 1))
self.torques = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.last_actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False)
self.last_dof_vel = torch.zeros_like(self.dof_vel)
self.height_points = self.init_height_points()
self.measured_heights = None
# joint positions offsets
self.default_dof_pos = torch.zeros_like(self.dof_pos, dtype=torch.float, device=self.device, requires_grad=False)
for i in range(self.num_actions):
name = self.dof_names[i]
angle = self.named_default_joint_angles[name]
self.default_dof_pos[:, i] = angle
# reward episode sums
torch_zeros = lambda : torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False)
self.episode_sums = {"lin_vel_xy": torch_zeros(), "lin_vel_z": torch_zeros(), "ang_vel_z": torch_zeros(), "ang_vel_xy": torch_zeros(),
"orient": torch_zeros(), "torques": torch_zeros(), "joint_acc": torch_zeros(), "base_height": torch_zeros(),
"air_time": torch_zeros(), "collision": torch_zeros(), "stumble": torch_zeros(), "action_rate": torch_zeros(), "hip": torch_zeros()}
self.reset_idx(torch.arange(self.num_envs, device=self.device))
self.init_done = True
def create_sim(self):
self.up_axis_idx = 2 # index of up axis: Y=1, Z=2
self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params)
terrain_type = self.cfg["env"]["terrain"]["terrainType"]
if terrain_type=='plane':
self._create_ground_plane()
elif terrain_type=='trimesh':
self._create_trimesh()
self.custom_origins = True
self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs)))
def _get_noise_scale_vec(self, cfg):
noise_vec = torch.zeros_like(self.obs_buf[0])
self.add_noise = self.cfg["env"]["learn"]["addNoise"]
noise_level = self.cfg["env"]["learn"]["noiseLevel"]
noise_vec[:3] = self.cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale
noise_vec[3:6] = self.cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale
noise_vec[6:9] = self.cfg["env"]["learn"]["gravityNoise"] * noise_level
noise_vec[9:12] = 0. # commands
noise_vec[12:24] = self.cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale
noise_vec[24:36] = self.cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale
noise_vec[36:176] = self.cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale
noise_vec[176:188] = 0. # previous actions
return noise_vec
def _create_ground_plane(self):
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
plane_params.static_friction = self.cfg["env"]["terrain"]["staticFriction"]
plane_params.dynamic_friction = self.cfg["env"]["terrain"]["dynamicFriction"]
plane_params.restitution = self.cfg["env"]["terrain"]["restitution"]
self.gym.add_ground(self.sim, plane_params)
def _create_trimesh(self):
self.terrain = Terrain(self.cfg["env"]["terrain"], num_robots=self.num_envs)
tm_params = gymapi.TriangleMeshParams()
tm_params.nb_vertices = self.terrain.vertices.shape[0]
tm_params.nb_triangles = self.terrain.triangles.shape[0]
tm_params.transform.p.x = -self.terrain.border_size
tm_params.transform.p.y = -self.terrain.border_size
tm_params.transform.p.z = 0.0
tm_params.static_friction = self.cfg["env"]["terrain"]["staticFriction"]
tm_params.dynamic_friction = self.cfg["env"]["terrain"]["dynamicFriction"]
tm_params.restitution = self.cfg["env"]["terrain"]["restitution"]
self.gym.add_triangle_mesh(self.sim, self.terrain.vertices.flatten(order='C'), self.terrain.triangles.flatten(order='C'), tm_params)
self.height_samples = torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device)
def _create_envs(self, num_envs, spacing, num_per_row):
asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../assets')
asset_file = self.cfg["env"]["urdfAsset"]["file"]
asset_path = os.path.join(asset_root, asset_file)
asset_root = os.path.dirname(asset_path)
asset_file = os.path.basename(asset_path)
asset_options = gymapi.AssetOptions()
asset_options.default_dof_drive_mode = gymapi.DOF_MODE_EFFORT
asset_options.collapse_fixed_joints = True
asset_options.replace_cylinder_with_capsule = True
asset_options.flip_visual_attachments = True
asset_options.fix_base_link = self.cfg["env"]["urdfAsset"]["fixBaseLink"]
asset_options.density = 0.001
asset_options.angular_damping = 0.0
asset_options.linear_damping = 0.0
asset_options.armature = 0.0
asset_options.thickness = 0.01
asset_options.disable_gravity = False
anymal_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options)
self.num_dof = self.gym.get_asset_dof_count(anymal_asset)
self.num_bodies = self.gym.get_asset_rigid_body_count(anymal_asset)
# prepare friction randomization
rigid_shape_prop = self.gym.get_asset_rigid_shape_properties(anymal_asset)
friction_range = self.cfg["env"]["learn"]["frictionRange"]
num_buckets = 100
friction_buckets = torch_rand_float(friction_range[0], friction_range[1], (num_buckets,1), device=self.device)
self.base_init_state = to_torch(self.base_init_state, device=self.device, requires_grad=False)
start_pose = gymapi.Transform()
start_pose.p = gymapi.Vec3(*self.base_init_state[:3])
body_names = self.gym.get_asset_rigid_body_names(anymal_asset)
self.dof_names = self.gym.get_asset_dof_names(anymal_asset)
foot_name = self.cfg["env"]["urdfAsset"]["footName"]
knee_name = self.cfg["env"]["urdfAsset"]["kneeName"]
feet_names = [s for s in body_names if foot_name in s]
self.feet_indices = torch.zeros(len(feet_names), dtype=torch.long, device=self.device, requires_grad=False)
knee_names = [s for s in body_names if knee_name in s]
self.knee_indices = torch.zeros(len(knee_names), dtype=torch.long, device=self.device, requires_grad=False)
self.base_index = 0
dof_props = self.gym.get_asset_dof_properties(anymal_asset)
# env origins
self.env_origins = torch.zeros(self.num_envs, 3, device=self.device, requires_grad=False)
if not self.curriculum: self.cfg["env"]["terrain"]["maxInitMapLevel"] = self.cfg["env"]["terrain"]["numLevels"] - 1
self.terrain_levels = torch.randint(0, self.cfg["env"]["terrain"]["maxInitMapLevel"]+1, (self.num_envs,), device=self.device)
self.terrain_types = torch.randint(0, self.cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device)
if self.custom_origins:
self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float)
spacing = 0.
env_lower = gymapi.Vec3(-spacing, -spacing, 0.0)
env_upper = gymapi.Vec3(spacing, spacing, spacing)
self.anymal_handles = []
self.envs = []
for i in range(self.num_envs):
# create env instance
env_handle = self.gym.create_env(self.sim, env_lower, env_upper, num_per_row)
if self.custom_origins:
self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]]
pos = self.env_origins[i].clone()
pos[:2] += torch_rand_float(-1., 1., (2, 1), device=self.device).squeeze(1)
start_pose.p = gymapi.Vec3(*pos)
for s in range(len(rigid_shape_prop)):
rigid_shape_prop[s].friction = friction_buckets[i % num_buckets]
self.gym.set_asset_rigid_shape_properties(anymal_asset, rigid_shape_prop)
anymal_handle = self.gym.create_actor(env_handle, anymal_asset, start_pose, "anymal", i, 0, 0)
self.gym.set_actor_dof_properties(env_handle, anymal_handle, dof_props)
self.envs.append(env_handle)
self.anymal_handles.append(anymal_handle)
for i in range(len(feet_names)):
self.feet_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], feet_names[i])
for i in range(len(knee_names)):
self.knee_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], knee_names[i])
self.base_index = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], "base")
def check_termination(self):
self.reset_buf = torch.norm(self.contact_forces[:, self.base_index, :], dim=1) > 1.
if not self.allow_knee_contacts:
knee_contact = torch.norm(self.contact_forces[:, self.knee_indices, :], dim=2) > 1.
self.reset_buf |= torch.any(knee_contact, dim=1)
self.reset_buf = torch.where(self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
def compute_observations(self):
self.measured_heights = self.get_heights()
heights = torch.clip(self.root_states[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.) * self.height_meas_scale
self.obs_buf = torch.cat(( self.base_lin_vel * self.lin_vel_scale,
self.base_ang_vel * self.ang_vel_scale,
self.projected_gravity,
self.commands[:, :3] * self.commands_scale,
self.dof_pos * self.dof_pos_scale,
self.dof_vel * self.dof_vel_scale,
heights,
self.actions
), dim=-1)
def compute_reward(self):
# velocity tracking reward
lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1)
ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2])
rew_lin_vel_xy = torch.exp(-lin_vel_error/0.25) * self.rew_scales["lin_vel_xy"]
rew_ang_vel_z = torch.exp(-ang_vel_error/0.25) * self.rew_scales["ang_vel_z"]
# other base velocity penalties
rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"]
rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"]
# orientation penalty
rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"]
# base height penalty
rew_base_height = torch.square(self.root_states[:, 2] - 0.52) * self.rew_scales["base_height"] # TODO add target base height to cfg
# torque penalty
rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"]
# joint acc penalty
rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"]
# collision penalty
knee_contact = torch.norm(self.contact_forces[:, self.knee_indices, :], dim=2) > 1.
rew_collision = torch.sum(knee_contact, dim=1) * self.rew_scales["collision"] # sum vs any ?
# stumbling penalty
stumble = (torch.norm(self.contact_forces[:, self.feet_indices, :2], dim=2) > 5.) * (torch.abs(self.contact_forces[:, self.feet_indices, 2]) < 1.)
rew_stumble = torch.sum(stumble, dim=1) * self.rew_scales["stumble"]
# action rate penalty
rew_action_rate = torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"]
# air time reward
# contact = torch.norm(contact_forces[:, feet_indices, :], dim=2) > 1.
contact = self.contact_forces[:, self.feet_indices, 2] > 1.
first_contact = (self.feet_air_time > 0.) * contact
self.feet_air_time += self.dt
rew_airTime = torch.sum((self.feet_air_time - 0.5) * first_contact, dim=1) * self.rew_scales["air_time"] # reward only on first contact with the ground
rew_airTime *= torch.norm(self.commands[:, :2], dim=1) > 0.1 #no reward for zero command
self.feet_air_time *= ~contact
# cosmetic penalty for hip motion
rew_hip = torch.sum(torch.abs(self.dof_pos[:, [0, 3, 6, 9]] - self.default_dof_pos[:, [0, 3, 6, 9]]), dim=1)* self.rew_scales["hip"]
# total reward
self.rew_buf = rew_lin_vel_xy + rew_ang_vel_z + rew_lin_vel_z + rew_ang_vel_xy + rew_orient + rew_base_height +\
rew_torque + rew_joint_acc + rew_collision + rew_action_rate + rew_airTime + rew_hip + rew_stumble
self.rew_buf = torch.clip(self.rew_buf, min=0., max=None)
# add termination reward
self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf
# log episode reward sums
self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy
self.episode_sums["ang_vel_z"] += rew_ang_vel_z
self.episode_sums["lin_vel_z"] += rew_lin_vel_z
self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy
self.episode_sums["orient"] += rew_orient
self.episode_sums["torques"] += rew_torque
self.episode_sums["joint_acc"] += rew_joint_acc
self.episode_sums["collision"] += rew_collision
self.episode_sums["stumble"] += rew_stumble
self.episode_sums["action_rate"] += rew_action_rate
self.episode_sums["air_time"] += rew_airTime
self.episode_sums["base_height"] += rew_base_height
self.episode_sums["hip"] += rew_hip
def reset_idx(self, env_ids):
positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device)
velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device)
self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset
self.dof_vel[env_ids] = velocities
env_ids_int32 = env_ids.to(dtype=torch.int32)
if self.custom_origins:
self.update_terrain_level(env_ids)
self.root_states[env_ids] = self.base_init_state
self.root_states[env_ids, :3] += self.env_origins[env_ids]
self.root_states[env_ids, :2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device)
else:
self.root_states[env_ids] = self.base_init_state
self.gym.set_actor_root_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self.root_states),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
self.gym.set_dof_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self.dof_state),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
self.commands[env_ids, 0] = torch_rand_float(self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device).squeeze()
self.commands[env_ids, 1] = torch_rand_float(self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device).squeeze()
self.commands[env_ids, 3] = torch_rand_float(self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device).squeeze()
self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze(1) # set small commands to zero
self.last_actions[env_ids] = 0.
self.last_dof_vel[env_ids] = 0.
self.feet_air_time[env_ids] = 0.
self.progress_buf[env_ids] = 0
self.reset_buf[env_ids] = 1
# fill extras
self.extras["episode"] = {}
for key in self.episode_sums.keys():
self.extras["episode"]['rew_' + key] = torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s
self.episode_sums[key][env_ids] = 0.
self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float())
def update_terrain_level(self, env_ids):
if not self.init_done or not self.curriculum:
# don't change on initial reset
return
distance = torch.norm(self.root_states[env_ids, :2] - self.env_origins[env_ids, :2], dim=1)
self.terrain_levels[env_ids] -= 1 * (distance < torch.norm(self.commands[env_ids, :2])*self.max_episode_length_s*0.25)
self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2)
self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows
self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]]
def push_robots(self):
self.root_states[:, 7:9] = torch_rand_float(-1., 1., (self.num_envs, 2), device=self.device) # lin vel x/y
self.gym.set_actor_root_state_tensor(self.sim, gymtorch.unwrap_tensor(self.root_states))
def pre_physics_step(self, actions):
self.actions = actions.clone().to(self.device)
for i in range(self.decimation):
torques = torch.clip(self.Kp*(self.action_scale*self.actions + self.default_dof_pos - self.dof_pos) - self.Kd*self.dof_vel,
-80., 80.)
self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(torques))
self.torques = torques.view(self.torques.shape)
self.gym.simulate(self.sim)
if self.device == 'cpu':
self.gym.fetch_results(self.sim, True)
self.gym.refresh_dof_state_tensor(self.sim)
def post_physics_step(self):
# self.gym.refresh_dof_state_tensor(self.sim) # done in step
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_net_contact_force_tensor(self.sim)
self.progress_buf += 1
self.randomize_buf += 1
self.common_step_counter += 1
if self.common_step_counter % self.push_interval == 0:
self.push_robots()
# prepare quantities
self.base_quat = self.root_states[:, 3:7]
self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.root_states[:, 7:10])
self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.root_states[:, 10:13])
self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec)
forward = quat_apply(self.base_quat, self.forward_vec)
heading = torch.atan2(forward[:, 1], forward[:, 0])
self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.)
# compute observations, rewards, resets, ...
self.check_termination()
self.compute_reward()
env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.compute_observations()
if self.add_noise:
self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec
self.last_actions[:] = self.actions[:]
self.last_dof_vel[:] = self.dof_vel[:]
if self.viewer and self.enable_viewer_sync and self.debug_viz:
# draw height lines
self.gym.clear_lines(self.viewer)
self.gym.refresh_rigid_body_state_tensor(self.sim)
sphere_geom = gymutil.WireframeSphereGeometry(0.02, 4, 4, None, color=(1, 1, 0))
for i in range(self.num_envs):
base_pos = (self.root_states[i, :3]).cpu().numpy()
heights = self.measured_heights[i].cpu().numpy()
height_points = quat_apply_yaw(self.base_quat[i].repeat(heights.shape[0]), self.height_points[i]).cpu().numpy()
for j in range(heights.shape[0]):
x = height_points[j, 0] + base_pos[0]
y = height_points[j, 1] + base_pos[1]
z = heights[j]
sphere_pose = gymapi.Transform(gymapi.Vec3(x, y, z), r=None)
gymutil.draw_lines(sphere_geom, self.gym, self.viewer, self.envs[i], sphere_pose)
def init_height_points(self):
# 1mx1.6m rectangle (without center line)
y = 0.1 * torch.tensor([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False) # 10-50cm on each side
x = 0.1 * torch.tensor([-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False) # 20-80cm on each side
grid_x, grid_y = torch.meshgrid(x, y)
self.num_height_points = grid_x.numel()
points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False)
points[:, :, 0] = grid_x.flatten()
points[:, :, 1] = grid_y.flatten()
return points
def get_heights(self, env_ids=None):
if self.cfg["env"]["terrain"]["terrainType"] == 'plane':
return torch.zeros(self.num_envs, self.num_height_points, device=self.device, requires_grad=False)
elif self.cfg["env"]["terrain"]["terrainType"] == 'none':
raise NameError("Can't measure height with terrain type 'none'")
if env_ids:
points = quat_apply_yaw(self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids]) + (self.root_states[env_ids, :3]).unsqueeze(1)
else:
points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + (self.root_states[:, :3]).unsqueeze(1)
points += self.terrain.border_size
points = (points/self.terrain.horizontal_scale).long()
px = points[:, :, 0].view(-1)
py = points[:, :, 1].view(-1)
px = torch.clip(px, 0, self.height_samples.shape[0]-2)
py = torch.clip(py, 0, self.height_samples.shape[1]-2)
heights1 = self.height_samples[px, py]
heights2 = self.height_samples[px+1, py+1]
heights = torch.min(heights1, heights2)
return heights.view(self.num_envs, -1) * self.terrain.vertical_scale
# terrain generator
from isaacgym.terrain_utils import *
class Terrain:
def __init__(self, cfg, num_robots) -> None:
self.type = cfg["terrainType"]
if self.type in ["none", 'plane']:
return
self.horizontal_scale = 0.1
self.vertical_scale = 0.005
self.border_size = 20
self.num_per_env = 2
self.env_length = cfg["mapLength"]
self.env_width = cfg["mapWidth"]
self.proportions = [np.sum(cfg["terrainProportions"][:i+1]) for i in range(len(cfg["terrainProportions"]))]
self.env_rows = cfg["numLevels"]
self.env_cols = cfg["numTerrains"]
self.num_maps = self.env_rows * self.env_cols
self.num_per_env = int(num_robots / self.num_maps)
self.env_origins = np.zeros((self.env_rows, self.env_cols, 3))
self.width_per_env_pixels = int(self.env_width / self.horizontal_scale)
self.length_per_env_pixels = int(self.env_length / self.horizontal_scale)
self.border = int(self.border_size/self.horizontal_scale)
self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border
self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border
self.height_field_raw = np.zeros((self.tot_rows , self.tot_cols), dtype=np.int16)
if cfg["curriculum"]:
self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows)
else:
self.randomized_terrain()
self.heightsamples = self.height_field_raw
self.vertices, self.triangles = convert_heightfield_to_trimesh(self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"])
def randomized_terrain(self):
for k in range(self.num_maps):
# Env coordinates in the world
(i, j) = np.unravel_index(k, (self.env_rows, self.env_cols))
# Heightfield coordinate system from now on
start_x = self.border + i * self.length_per_env_pixels
end_x = self.border + (i + 1) * self.length_per_env_pixels
start_y = self.border + j * self.width_per_env_pixels
end_y = self.border + (j + 1) * self.width_per_env_pixels
terrain = SubTerrain("terrain",
width=self.width_per_env_pixels,
length=self.width_per_env_pixels,
vertical_scale=self.vertical_scale,
horizontal_scale=self.horizontal_scale)
choice = np.random.uniform(0, 1)
if choice < 0.1:
if np.random.choice([0, 1]):
pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3]))
random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2)
else:
pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3]))
elif choice < 0.6:
# step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18])
step_height = np.random.choice([-0.15, 0.15])
pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.)
elif choice < 1.:
discrete_obstacles_terrain(terrain, 0.15, 1., 2., 40, platform_size=3.)
self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw
env_origin_x = (i + 0.5) * self.env_length
env_origin_y = (j + 0.5) * self.env_width
x1 = int((self.env_length/2. - 1) / self.horizontal_scale)
x2 = int((self.env_length/2. + 1) / self.horizontal_scale)
y1 = int((self.env_width/2. - 1) / self.horizontal_scale)
y2 = int((self.env_width/2. + 1) / self.horizontal_scale)
env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale
self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
def curiculum(self, num_robots, num_terrains, num_levels):
num_robots_per_map = int(num_robots / num_terrains)
left_over = num_robots % num_terrains
idx = 0
for j in range(num_terrains):
for i in range(num_levels):
terrain = SubTerrain("terrain",
width=self.width_per_env_pixels,
length=self.width_per_env_pixels,
vertical_scale=self.vertical_scale,
horizontal_scale=self.horizontal_scale)
difficulty = i / num_levels
choice = j / num_terrains
slope = difficulty * 0.4
step_height = 0.05 + 0.175 * difficulty
discrete_obstacles_height = 0.025 + difficulty * 0.15
stepping_stones_size = 2 - 1.8 * difficulty
if choice < self.proportions[0]:
if choice < 0.05:
slope *= -1
pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.)
elif choice < self.proportions[1]:
if choice < 0.15:
slope *= -1
pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.)
random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2)
elif choice < self.proportions[3]:
if choice<self.proportions[2]:
step_height *= -1
pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.)
elif choice < self.proportions[4]:
discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1., 2., 40, platform_size=3.)
else:
stepping_stones_terrain(terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0., platform_size=3.)
# Heightfield coordinate system
start_x = self.border + i * self.length_per_env_pixels
end_x = self.border + (i + 1) * self.length_per_env_pixels
start_y = self.border + j * self.width_per_env_pixels
end_y = self.border + (j + 1) * self.width_per_env_pixels
self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw
robots_in_map = num_robots_per_map
if j < left_over:
robots_in_map +=1
env_origin_x = (i + 0.5) * self.env_length
env_origin_y = (j + 0.5) * self.env_width
x1 = int((self.env_length/2. - 1) / self.horizontal_scale)
x2 = int((self.env_length/2. + 1) / self.horizontal_scale)
y1 = int((self.env_width/2. - 1) / self.horizontal_scale)
y2 = int((self.env_width/2. + 1) / self.horizontal_scale)
env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale
self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
@torch.jit.script
def quat_apply_yaw(quat, vec):
quat_yaw = quat.clone().view(-1, 4)
quat_yaw[:, :2] = 0.
quat_yaw = normalize(quat_yaw)
return quat_apply(quat_yaw, vec)
@torch.jit.script
def wrap_to_pi(angles):
angles %= 2*np.pi
angles -= 2*np.pi * (angles > np.pi)
return angles