-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathyolo.py
279 lines (249 loc) · 12.1 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import colorsys
import copy
import os
from timeit import default_timer as timer
import numpy as np
import tensorflow as tf
from PIL import Image, ImageDraw, ImageFont
from tensorflow.compat.v1.keras import backend as K
from tensorflow.keras.layers import Input, Lambda
from tensorflow.keras.models import Model, load_model
from nets.yolo4_tiny import yolo_body, yolo_eval
from utils.utils import letterbox_image
#--------------------------------------------#
# 使用自己训练好的模型预测需要修改2个参数
# model_path和classes_path都需要修改!
# 如果出现shape不匹配,一定要注意
# 训练时的model_path和classes_path参数的修改
#--------------------------------------------#
class YOLO(object):
_defaults = {
"model_path" : 'model_data/yolov4_tiny_weights_voc.h5',
"anchors_path" : 'model_data/yolo_anchors.txt',
"classes_path" : 'model_data/voc_classes.txt',
"score" : 0.5,
"iou" : 0.3,
"eager" : True,
"max_boxes" : 100,
# 显存比较小可以使用416x416
# 显存比较大可以使用608x608
"model_image_size" : (416, 416)
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
#---------------------------------------------------#
# 初始化yolo
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
self.class_names = self._get_class()
self.anchors = self._get_anchors()
if not self.eager:
tf.compat.v1.disable_eager_execution()
self.sess = K.get_session()
self.generate()
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
#---------------------------------------------------#
# 获得所有的先验框
#---------------------------------------------------#
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
#---------------------------------------------------#
# 载入模型
#---------------------------------------------------#
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
#---------------------------------------------------#
# 计算先验框的数量和种类的数量
#---------------------------------------------------#
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
#---------------------------------------------------------#
# 载入模型
#---------------------------------------------------------#
self.yolo_model = yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes)
self.yolo_model.load_weights(self.model_path)
print('{} model, anchors, and classes loaded.'.format(model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
# 打乱颜色
np.random.seed(10101)
np.random.shuffle(self.colors)
np.random.seed(None)
#---------------------------------------------------------#
# 在yolo_eval函数中,我们会对预测结果进行后处理
# 后处理的内容包括,解码、非极大抑制、门限筛选等
#---------------------------------------------------------#
if self.eager:
self.input_image_shape = Input([2,],batch_size=1)
inputs = [*self.yolo_model.output, self.input_image_shape]
outputs = Lambda(yolo_eval, output_shape=(1,), name='yolo_eval',
arguments={'anchors': self.anchors, 'num_classes': len(self.class_names), 'image_shape': self.model_image_size,
'score_threshold': self.score, 'eager': True, 'max_boxes': self.max_boxes})(inputs)
self.yolo_model = Model([self.yolo_model.input, self.input_image_shape], outputs)
else:
self.input_image_shape = K.placeholder(shape=(2, ))
self.boxes, self.scores, self.classes = yolo_eval(self.yolo_model.output, self.anchors,
num_classes, self.input_image_shape, max_boxes=self.max_boxes,
score_threshold=self.score, iou_threshold=self.iou)
@tf.function
def get_pred(self, image_data, input_image_shape):
out_boxes, out_scores, out_classes = self.yolo_model([image_data, input_image_shape], training=False)
return out_boxes, out_scores, out_classes
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image):
# -------------------------------------#
# 物体实际距离:actual_distance 5
# 物体实际高度:actual_high (高度) car:1.5 people:1.7 bike:1.2
# 物体像素高度:pixel_high (高度) car:291 people:283 bike:212
# 焦距focus =(pixel_high * actual_distance)/ actual_high
# 焦距focus已知后,就可以根据像素高度测出物体实际距离,公式如下:actual_distance =(actual_high * focus)/pixel_high
# -------------------------------------#
# car:focus_car = (291 * 5) / 1.5 = 970
# people:focus_people = (283 * 5) / 1.7 = 714
# bike:focus_bike = (212 * 5) / 1.2 = 514
# -------------------------------------#
# 实际高度
actual_high_car = 1.5
actual_high_people = 1.7
actual_high_bike = 1.2
# 像素高度
pixel_high_car = 0
pixel_high_people = 0
pixel_high_bike = 0
# 焦距
focus_car = 970
focus_people = 714
focus_bike = 514
# 实际距离
actual_distance = " "
actual_distance_car = 0
actual_distance_people = 0
actual_distance_bike = 0
start = timer()
cx = 0
cy = 0
#---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
#---------------------------------------------------------#
new_image_size = (self.model_image_size[1],self.model_image_size[0])
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
image_data /= 255.
#---------------------------------------------------------#
# 添加上batch_size维度
#---------------------------------------------------------#
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
#---------------------------------------------------------#
# 将图像输入网络当中进行预测
#---------------------------------------------------------#
if self.eager:
# 预测结果
input_image_shape = np.expand_dims(np.array([image.size[1], image.size[0]], dtype='float32'), 0)
out_boxes, out_scores, out_classes = self.get_pred(image_data, input_image_shape)
else:
# 预测结果
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
#---------------------------------------------------------#
# 设置字体
#---------------------------------------------------------#
font = ImageFont.truetype(font='font/simhei.ttf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = max((image.size[0] + image.size[1]) // 300, 1)
out_name = [0]*len(out_boxes)
for i, c in list(enumerate(out_classes)):
predicted_class = self.class_names[c]
out_name[i] = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
top, left, bottom, right = box
cy = (top+bottom)/2
cx = (left+right)/2
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
# 画框框
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
# label为识别出的类型
print(label, top, left, bottom, right)
# 计算障碍物的实际距离
if "person" in str(label):
pixel_high_people = bottom - top
actual_distance_people = (actual_high_people * focus_people) / pixel_high_people
actual_distance = round(actual_distance_people,1)
print("distance_people:", actual_distance_people)
elif "car" in str(label):
pixel_high_car = bottom - top
actual_distance_car = (actual_high_car * focus_car) / pixel_high_car
actual_distance = round(actual_distance_car,1)
print("distance_car:", actual_distance_car)
elif "bicycle" in str(label) or "motorbike" in str(label):
pixel_high_bike = bottom - top
actual_distance_bike = (actual_high_bike * focus_bike) / pixel_high_bike
actual_distance = round(actual_distance_bike,1)
print("distance_bike:", actual_distance_bike)
else:
actual_distance = "null"
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[c])
draw.text(text_origin, str(label,'UTF-8') +" "+"distance:" +
str(actual_distance) + "m", fill="green", font=font)
del draw
end = timer()
print(round(end - start),1) # 打印时间
if len(out_boxes) != 0:
j = np.argmax(out_scores)
predicted_classes = out_name[j]
else:
predicted_classes = 'none'
return image, predicted_classes,cx,cy
def close_session(self):
self.sess.close()