-
Notifications
You must be signed in to change notification settings - Fork 39
/
render.py
executable file
·131 lines (109 loc) · 6.08 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
from os import makedirs
import torch
import numpy as np
import subprocess
cmd = 'nvidia-smi -q -d Memory |grep -A4 GPU|grep Used'
result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.decode().split('\n')
os.environ['CUDA_VISIBLE_DEVICES']=str(np.argmin([int(x.split()[2]) for x in result[:-1]]))
os.system('echo $CUDA_VISIBLE_DEVICES')
from scene import Scene
import json
import time
from gaussian_renderer import render, prefilter_voxel
import torchvision
from tqdm import tqdm
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
def render_set(model_path, name, iteration, views, gaussians, pipeline, background, show_level, ape_code):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(gts_path, exist_ok=True)
if show_level:
render_level_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders_level")
makedirs(render_level_path, exist_ok=True)
t_list = []
per_view_dict = {}
per_view_level_dict = {}
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
torch.cuda.synchronize(); t0 = time.time()
gaussians.set_anchor_mask(view.camera_center, iteration, view.resolution_scale)
voxel_visible_mask = prefilter_voxel(view, gaussians, pipeline, background)
render_pkg = render(view, gaussians, pipeline, background, visible_mask=voxel_visible_mask, ape_code=ape_code)
torch.cuda.synchronize(); t1 = time.time()
t_list.append(t1-t0)
rendering = torch.clamp(render_pkg["render"], 0.0, 1.0)
visible_count = render_pkg["visibility_filter"].sum()
per_view_dict['{0:05d}'.format(idx)+".png"] = visible_count.item()
gt = view.original_image[0:3, :, :]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
if show_level:
for cur_level in range(gaussians.levels):
gaussians.set_anchor_mask_perlevel(view.camera_center, view.resolution_scale, cur_level)
voxel_visible_mask = prefilter_voxel(view, gaussians, pipeline, background)
render_pkg = render(view, gaussians, pipeline, background, visible_mask=voxel_visible_mask, ape_code=ape_code)
rendering = render_pkg["render"]
visible_count = render_pkg["visibility_filter"].sum()
torchvision.utils.save_image(rendering, os.path.join(render_level_path, '{0:05d}_LOD{1:d}'.format(idx, cur_level) + ".png"))
per_view_level_dict['{0:05d}_LOD{1:d}'.format(idx, cur_level) + ".png"] = visible_count.item()
t = np.array(t_list[5:])
fps = 1.0 / t.mean()
print(f'Test FPS: \033[1;35m{fps:.5f}\033[0m')
with open(os.path.join(model_path, name, "ours_{}".format(iteration), "per_view_count.json"), 'w') as fp:
json.dump(per_view_dict, fp, indent=True)
if show_level:
with open(os.path.join(model_path, name, "ours_{}".format(iteration), "per_view_count_level.json"), 'w') as fp:
json.dump(per_view_level_dict, fp, indent=True)
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, show_level : bool, ape_code : int):
with torch.no_grad():
gaussians = GaussianModel(
dataset.feat_dim, dataset.n_offsets, dataset.fork, dataset.use_feat_bank, dataset.appearance_dim,
dataset.add_opacity_dist, dataset.add_cov_dist, dataset.add_color_dist, dataset.add_level,
dataset.visible_threshold, dataset.dist2level, dataset.base_layer, dataset.progressive, dataset.extend
)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False, resolution_scales=dataset.resolution_scales)
gaussians.eval()
gaussians.plot_levels()
if dataset.random_background:
bg_color = [np.random.random(),np.random.random(),np.random.random()]
elif dataset.white_background:
bg_color = [1.0, 1.0, 1.0]
else:
bg_color = [0.0, 0.0, 0.0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not os.path.exists(dataset.model_path):
os.makedirs(dataset.model_path)
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background, show_level, ape_code)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background, show_level, ape_code)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--ape", default=10, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--show_level", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, args.show_level, args.ape)