-
Notifications
You must be signed in to change notification settings - Fork 3
/
imagenet.py
259 lines (203 loc) · 9.4 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import shutil
import torch
ARCHIVE_DICT = {
'train': {
'url': 'http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_train.tar',
'md5': '1d675b47d978889d74fa0da5fadfb00e',
},
'val': {
'url': 'http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_val.tar',
'md5': '29b22e2961454d5413ddabcf34fc5622',
},
'devkit': {
'url': 'http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_devkit_t12.tar.gz',
'md5': 'fa75699e90414af021442c21a62c3abf',
}
}
import torchvision
from torchvision.datasets.utils import check_integrity, download_url
# copy ILSVRC/ImageSets/CLS-LOC/train_cls.txt to ./root/
# to skip os walk (it's too slow) using ILSVRC/ImageSets/CLS-LOC/train_cls.txt file
class ImageNet(torchvision.datasets.ImageFolder):
"""`ImageNet <http://image-net.org/>`_ 2012 Classification Dataset.
Args:
root (string): Root directory of the ImageNet Dataset.
split (string, optional): The dataset split, supports ``train``, or ``val``.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
wnids (list): List of the WordNet IDs.
wnid_to_idx (dict): Dict with items (wordnet_id, class_index).
imgs (list): List of (image path, class_index) tuples
targets (list): The class_index value for each image in the dataset
"""
def __init__(self, root, split='train', download=False, **kwargs):
root = self.root = os.path.expanduser(root)
self.split = self._verify_split(split)
if download:
self.download()
wnid_to_classes = self._load_meta_file()[0]
# to skip os walk (it's too slow) using ILSVRC/ImageSets/CLS-LOC/train_cls.txt file
listfile = os.path.join(root, 'train_cls.txt')
if split == 'train' and os.path.exists(listfile):
torchvision.datasets.VisionDataset.__init__(self, root, **kwargs)
with open(listfile, 'r') as f:
datalist = [
line.strip().split(' ')[0]
for line in f.readlines()
if line.strip()
]
classes = list(set([line.split('/')[0] for line in datalist]))
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
samples = [
(os.path.join(self.split_folder, line + '.JPEG'), class_to_idx[line.split('/')[0]])
for line in datalist
]
self.loader = torchvision.datasets.folder.default_loader
self.extensions = torchvision.datasets.folder.IMG_EXTENSIONS
self.classes = classes
self.class_to_idx = class_to_idx
self.samples = samples
self.targets = [s[1] for s in samples]
self.imgs = self.samples
else:
super(ImageNet, self).__init__(self.split_folder, **kwargs)
self.root = root
idcs = [idx for _, idx in self.imgs]
self.wnids = self.classes
self.wnid_to_idx = {wnid: idx for idx, wnid in zip(idcs, self.wnids)}
self.classes = [wnid_to_classes[wnid] for wnid in self.wnids]
self.class_to_idx = {cls: idx
for clss, idx in zip(self.classes, idcs)
for cls in clss}
def download(self):
if not check_integrity(self.meta_file):
tmpdir = os.path.join(self.root, 'tmp')
archive_dict = ARCHIVE_DICT['devkit']
download_and_extract_tar(archive_dict['url'], self.root,
extract_root=tmpdir,
md5=archive_dict['md5'])
devkit_folder = _splitexts(os.path.basename(archive_dict['url']))[0]
meta = parse_devkit(os.path.join(tmpdir, devkit_folder))
self._save_meta_file(*meta)
shutil.rmtree(tmpdir)
if not os.path.isdir(self.split_folder):
archive_dict = ARCHIVE_DICT[self.split]
download_and_extract_tar(archive_dict['url'], self.root,
extract_root=self.split_folder,
md5=archive_dict['md5'])
if self.split == 'train':
prepare_train_folder(self.split_folder)
elif self.split == 'val':
val_wnids = self._load_meta_file()[1]
prepare_val_folder(self.split_folder, val_wnids)
else:
msg = ("You set download=True, but a folder '{}' already exist in "
"the root directory. If you want to re-download or re-extract the "
"archive, delete the folder.")
print(msg.format(self.split))
@property
def meta_file(self):
return os.path.join(self.root, 'meta.bin')
def _load_meta_file(self):
if check_integrity(self.meta_file):
return torch.load(self.meta_file)
raise RuntimeError("Meta file not found or corrupted.",
"You can use download=True to create it.")
def _save_meta_file(self, wnid_to_class, val_wnids):
torch.save((wnid_to_class, val_wnids), self.meta_file)
def _verify_split(self, split):
if split not in self.valid_splits:
msg = "Unknown split {} .".format(split)
msg += "Valid splits are {{}}.".format(", ".join(self.valid_splits))
raise ValueError(msg)
return split
@property
def valid_splits(self):
return 'train', 'val'
@property
def split_folder(self):
return os.path.join(self.root, self.split)
def extra_repr(self):
return "Split: {split}".format(**self.__dict__)
def extract_tar(src, dest=None, gzip=None, delete=False):
import tarfile
if dest is None:
dest = os.path.dirname(src)
if gzip is None:
gzip = src.lower().endswith('.gz')
mode = 'r:gz' if gzip else 'r'
with tarfile.open(src, mode) as tarfh:
tarfh.extractall(path=dest)
if delete:
os.remove(src)
def download_and_extract_tar(url, download_root, extract_root=None, filename=None,
md5=None, **kwargs):
download_root = os.path.expanduser(download_root)
if extract_root is None:
extract_root = download_root
if filename is None:
filename = os.path.basename(url)
if not check_integrity(os.path.join(download_root, filename), md5):
download_url(url, download_root, filename=filename, md5=md5)
extract_tar(os.path.join(download_root, filename), extract_root, **kwargs)
def parse_devkit(root):
idx_to_wnid, wnid_to_classes = parse_meta(root)
val_idcs = parse_val_groundtruth(root)
val_wnids = [idx_to_wnid[idx] for idx in val_idcs]
return wnid_to_classes, val_wnids
def parse_meta(devkit_root, path='data', filename='meta.mat'):
import scipy.io as sio
metafile = os.path.join(devkit_root, path, filename)
meta = sio.loadmat(metafile, squeeze_me=True)['synsets']
nums_children = list(zip(*meta))[4]
meta = [meta[idx] for idx, num_children in enumerate(nums_children)
if num_children == 0]
idcs, wnids, classes = list(zip(*meta))[:3]
classes = [tuple(clss.split(', ')) for clss in classes]
idx_to_wnid = {idx: wnid for idx, wnid in zip(idcs, wnids)}
wnid_to_classes = {wnid: clss for wnid, clss in zip(wnids, classes)}
return idx_to_wnid, wnid_to_classes
def parse_val_groundtruth(devkit_root, path='data',
filename='ILSVRC2012_validation_ground_truth.txt'):
with open(os.path.join(devkit_root, path, filename), 'r') as txtfh:
val_idcs = txtfh.readlines()
return [int(val_idx) for val_idx in val_idcs]
def prepare_train_folder(folder):
for archive in [os.path.join(folder, archive) for archive in os.listdir(folder)]:
extract_tar(archive, os.path.splitext(archive)[0], delete=True)
def prepare_val_folder(folder, wnids):
img_files = sorted([os.path.join(folder, file) for file in os.listdir(folder)])
for wnid in set(wnids):
os.mkdir(os.path.join(folder, wnid))
for wnid, img_file in zip(wnids, img_files):
shutil.move(img_file, os.path.join(folder, wnid, os.path.basename(img_file)))
def _splitexts(root):
exts = []
ext = '.'
while ext:
root, ext = os.path.splitext(root)
exts.append(ext)
return root, ''.join(reversed(exts))
from torch.utils.data import SubsetRandomSampler, Sampler, Subset, ConcatDataset
class SubsetSampler(Sampler):
"""Samples elements from a given list of indices, without replacement.
Arguments:
indices (sequence): a sequence of indices
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (i for i in self.indices)
def __len__(self):
return len(self.indices)