-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathc.go
252 lines (208 loc) · 6.52 KB
/
c.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
package cbpfc
import (
"fmt"
"regexp"
"strings"
"text/template"
"github.com/pkg/errors"
"golang.org/x/net/bpf"
)
const funcTemplate = `
// True if packet matches, false otherwise
{{- if not .NoInline}}
__attribute__((__always_inline__)) static inline
{{- end}}
uint32_t {{.Name}}(const uint8_t *const data, const uint8_t *const data_end) {
__attribute__((unused))
uint32_t a, x, m[16];
__attribute__((unused))
const uint8_t *indirect;
{{range $i, $b := .Blocks}}
{{$b.Label}}:
__attribute__((unused));
{{- range $i, $s := $b.Statements}}
{{$s}}
{{- end}}
{{end}}
}`
type cFunction struct {
Name string
NoInline bool
Blocks []cBlock
}
// cBPF reg to C symbol
var regToCSym = map[bpf.Register]string{
bpf.RegA: "a",
bpf.RegX: "x",
}
// alu operation to C operator
var aluToCOp = map[bpf.ALUOp]string{
bpf.ALUOpAdd: "+",
bpf.ALUOpSub: "-",
bpf.ALUOpMul: "*",
bpf.ALUOpDiv: "/",
bpf.ALUOpOr: "|",
bpf.ALUOpAnd: "&",
bpf.ALUOpShiftLeft: "<<",
bpf.ALUOpShiftRight: ">>",
bpf.ALUOpMod: "%",
bpf.ALUOpXor: "^",
}
// jump test to a C fmt string for condition
var condToCFmt = map[bpf.JumpTest]string{
bpf.JumpEqual: "a == %v",
bpf.JumpNotEqual: "a != %v",
bpf.JumpGreaterThan: "a > %v",
bpf.JumpLessThan: "a < %v",
bpf.JumpGreaterOrEqual: "a >= %v",
bpf.JumpLessOrEqual: "a <= %v",
bpf.JumpBitsSet: "a & %v",
bpf.JumpBitsNotSet: "!(a & %v)",
}
var funcNameRegex = regexp.MustCompile(`^[A-Za-z_][0-9A-Za-z_]*$`)
// cBLock is a block of compiled C
type cBlock struct {
*block
Statements []string
}
type COpts struct {
// FunctionName is the symbol to use as the generated C function. Must match regex:
// [A-Za-z_][0-9A-Za-z_]*
FunctionName string
// NoInline doesn't force the generated function to be inlined, allowing clang to emit
// a BPF to BPF call.
// Requires at least kernel 5.10 (for x86, later for other architectures) if used with tail-calls.
NoInline bool
}
// ToC compiles a cBPF filter to a C function with a signature of:
//
// uint32_t opts.FunctionName(const uint8_t *const data, const uint8_t *const data_end)
//
// The function returns the filter's return value:
// 0 if the packet does not match the cBPF filter,
// non 0 if the packet does match.
func ToC(filter []bpf.Instruction, opts COpts) (string, error) {
if !funcNameRegex.MatchString(opts.FunctionName) {
return "", errors.Errorf("invalid FunctionName %q", opts.FunctionName)
}
blocks, err := compile(filter)
if err != nil {
return "", err
}
fun := cFunction{
Name: opts.FunctionName,
Blocks: make([]cBlock, len(blocks)),
}
// Compile blocks to C
for i, block := range blocks {
fun.Blocks[i], err = blockToC(block)
if err != nil {
return "", err
}
}
// Fill in the template
tmpl, err := template.New("cbfp_func").Parse(funcTemplate)
if err != nil {
return "", errors.Wrapf(err, "unable to parse func template")
}
c := strings.Builder{}
if err := tmpl.Execute(&c, fun); err != nil {
return "", errors.Wrapf(err, "unable to execute func template")
}
return c.String(), nil
}
// blockToC compiles a block to C.
func blockToC(blk *block) (cBlock, error) {
cBlk := cBlock{
block: blk,
}
for _, insn := range blk.insns {
stat, err := insnToC(insn, blk)
if err != nil {
return cBlk, errors.Wrapf(err, "unable to compile %v", insn)
}
cBlk.Statements = append(cBlk.Statements, stat...)
}
return cBlk, nil
}
// insnToC compiles an instruction to a single C line / statement.
func insnToC(insn instruction, blk *block) ([]string, error) {
switch i := insn.Instruction.(type) {
case bpf.LoadConstant:
return stat("%s = %d;", regToCSym[i.Dst], i.Val)
case bpf.LoadScratch:
return stat("%s = m[%d];", regToCSym[i.Dst], i.N)
case bpf.LoadAbsolute:
return packetLoadToC(i.Size, "data + %d", i.Off)
case bpf.LoadIndirect:
return packetLoadToC(i.Size, "indirect + %d", i.Off)
case bpf.LoadMemShift:
return stat("x = 4*(*(data + %d) & 0xf);", i.Off)
case bpf.StoreScratch:
return stat("m[%d] = %s;", i.N, regToCSym[i.Src])
case bpf.LoadExtension:
if i.Num != bpf.ExtLen {
return nil, errors.Errorf("unsupported BPF extension %v", i)
}
return stat("a = data_end - data;")
case bpf.ALUOpConstant:
return stat("a %s= %d;", aluToCOp[i.Op], i.Val)
case bpf.ALUOpX:
return stat("a %s= x;", aluToCOp[i.Op])
case bpf.NegateA:
return stat("a = -a;")
case bpf.Jump:
return stat("goto %s;", blk.skipToBlock(skip(i.Skip)).Label())
case bpf.JumpIf:
return condToC(skip(i.SkipTrue), skip(i.SkipFalse), blk, condToCFmt[i.Cond], i.Val)
case bpf.JumpIfX:
return condToC(skip(i.SkipTrue), skip(i.SkipFalse), blk, condToCFmt[i.Cond], "x")
case bpf.RetA:
return stat("return a;")
case bpf.RetConstant:
return stat("return %d;", i.Val)
case bpf.TXA:
return stat("a = x;")
case bpf.TAX:
return stat("x = a;")
case packetGuardAbsolute:
return stat("if (data + %d > data_end) return 0;", i.end)
case packetGuardIndirect:
return []string{
// Sign extend RegX to 64bits.
fmt.Sprintf("indirect = (uint8_t *) (((int64_t) (int32_t) x) + %d);", i.start),
fmt.Sprintf("if ((uint64_t)indirect >= %d) return false;", i.maxStartOffset()),
fmt.Sprintf("indirect = data + (uint64_t)indirect;"),
// Prevent clang from calculating indirect + delta() directly from the packet start when RegX is constant:
// only indirect has the correct bounds check.
fmt.Sprintf(`asm volatile("" : : "r" (indirect));`),
fmt.Sprintf("if (indirect + %d > data_end) return false;", i.length()),
}, nil
case checkXNotZero:
return stat("if (x == 0) return 0;")
default:
return nil, errors.Errorf("unsupported instruction %v", insn)
}
}
func packetLoadToC(size int, offsetFmt string, offsetArgs ...interface{}) ([]string, error) {
offset := fmt.Sprintf(offsetFmt, offsetArgs...)
switch size {
case 1:
return stat("a = *(%s);", offset)
case 2:
return stat("a = ntohs(*((uint16_t *) (%s)));", offset)
case 4:
return stat("a = ntohl(*((uint32_t *) (%s)));", offset)
}
return nil, errors.Errorf("unsupported load size %d", size)
}
func condToC(skipTrue, skipFalse skip, blk *block, condFmt string, condArgs ...interface{}) ([]string, error) {
cond := fmt.Sprintf(condFmt, condArgs...)
if skipFalse == 0 {
return stat("if (%s) goto %s;", cond, blk.skipToBlock(skipTrue).Label())
}
return stat("if (%s) goto %s; else goto %s;", cond, blk.skipToBlock(skipTrue).Label(), blk.skipToBlock(skipFalse).Label())
}
func stat(format string, a ...interface{}) ([]string, error) {
return []string{fmt.Sprintf(format, a...)}, nil
}