Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(deps): Update dependency numpy to v1.26.1 #76

Merged
merged 1 commit into from
Nov 1, 2023
Merged

Conversation

cq-bot
Copy link
Contributor

@cq-bot cq-bot commented Nov 1, 2023

This PR contains the following updates:

Package Update Change
numpy (source, changelog) patch ==1.26.0 -> ==1.26.1

Release Notes

numpy/numpy (numpy)

v1.26.1

Compare Source

NumPy 1.26.1 Release Notes

NumPy 1.26.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.0 release. In addition, it adds new
functionality for detecting BLAS and LAPACK when building from source.
Highlights are:

  • Improved detection of BLAS and LAPACK libraries for meson builds
  • Pickle compatibility with the upcoming NumPy 2.0.

The 1.26.release series is the last planned minor release series before
NumPy 2.0. The Python versions supported by this release are 3.9-3.12.

Build system changes

Improved BLAS/LAPACK detection and control

Auto-detection for a number of BLAS and LAPACK is now implemented for
Meson. By default, the build system will try to detect MKL, Accelerate
(on macOS >=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK.
Support for MKL was significantly improved, and support for FlexiBLAS
was added.

New command-line flags are available to further control the selection of
the BLAS and LAPACK libraries to build against.

To select a specific library, use the config-settings interface via
pip or pypa/build. E.g., to select libblas/liblapack, use:

$ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
$ # OR
$ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack

This works not only for the libraries named above, but for any library
that Meson is able to detect with the given name through pkg-config or
CMake.

Besides -Dblas and -Dlapack, a number of other new flags are
available to control BLAS/LAPACK selection and behavior:

  • -Dblas-order and -Dlapack-order: a list of library names to
    search for in order, overriding the default search order.
  • -Duse-ilp64: if set to true, use ILP64 (64-bit integer) BLAS and
    LAPACK. Note that with this release, ILP64 support has been extended
    to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported
    in previous releases.
  • -Dallow-noblas: if set to true, allow NumPy to build with its
    internal (very slow) fallback routines instead of linking against an
    external BLAS/LAPACK library. The default for this flag may be
    changed to ``true`` in a future 1.26.x release, however for
    1.26.1 we'd prefer to keep it as ``false`` because if failures
    to detect an installed library are happening, we'd like a bug
    report for that, so we can quickly assess whether the new
    auto-detection machinery needs further improvements.
  • -Dmkl-threading: to select the threading layer for MKL. There are
    four options: seq, iomp, gomp and tbb. The default is
    auto, which selects from those four as appropriate given the
    version of MKL selected.
  • -Dblas-symbol-suffix: manually select the symbol suffix to use for
    the library - should only be needed for linking against libraries
    built in a non-standard way.

New features

numpy._core submodule stubs

numpy._core submodule stubs were added to provide compatibility with
pickled arrays created using NumPy 2.0 when running Numpy 1.26.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Anton Prosekin +
  • Charles Harris
  • Chongyun Lee +
  • Ivan A. Melnikov +
  • Jake Lishman +
  • Mahder Gebremedhin +
  • Mateusz Sokół
  • Matti Picus
  • Munira Alduraibi +
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel

Pull requests merged

A total of 20 pull requests were merged for this release.

  • #​24742: MAINT: Update cibuildwheel version
  • #​24748: MAINT: fix version string in wheels built with setup.py
  • #​24771: BLD, BUG: Fix build failure for host flags e.g. -march=native...
  • #​24773: DOC: Updated the f2py docs to remove a note on -fimplicit-none
  • #​24776: BUG: Fix SIMD f32 trunc test on s390x when baseline is none
  • #​24785: BLD: add libquadmath to licences and other tweaks (#​24753)
  • #​24786: MAINT: Activate use-compute-credits for Cirrus.
  • #​24803: BLD: updated vendored-meson/meson for mips64 fix
  • #​24804: MAINT: fix licence path win
  • #​24813: BUG: Fix order of Windows OS detection macros.
  • #​24831: BUG, SIMD: use scalar cmul on bad Apple clang x86_64 (#​24828)
  • #​24840: BUG: Fix DATA statements for f2py
  • #​24870: API: Add NumpyUnpickler for backporting
  • #​24872: MAINT: Xfail test failing on PyPy.
  • #​24879: BLD: fix math func feature checks, fix FreeBSD build, add CI...
  • #​24899: ENH: meson: implement BLAS/LAPACK auto-detection and many CI...
  • #​24902: DOC: add a 1.26.1 release notes section for BLAS/LAPACK build...
  • #​24906: MAINT: Backport numpy._core stubs. Remove NumpyUnpickler
  • #​24911: MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2
  • #​24912: BUG: loongarch doesn't use REAL(10)

Checksums

MD5
bda38de1a047dd9fdddae16c0d9fb358  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
196d2e39047da64ab28e177760c95461  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
9d25010a7bf50e624d2fed742790afbd  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b22fa3d030807f0708007d9c0659f65  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea626b8b930acb4b32302a9e95714f5  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
3c40ef068f50d2ac2913c5b9fa1233fa  numpy-1.26.1-cp310-cp310-win32.whl
315c251d2f284af25761a37ce6dd4d10  numpy-1.26.1-cp310-cp310-win_amd64.whl
ebdd5046937df50e9f54a6d38c5775dd  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
682f9beebe8547f205d6cdc8ff96a984  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
e86da9b6040ea88b3835c4d8f8578658  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ebcb6cf7f64454215e29d8a89829c8e1  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8c89e13dc9a63712104e2fb06fb63a6  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
339795930404988dbc664ff4cc72b399  numpy-1.26.1-cp311-cp311-win32.whl
4ef5e1bdd7726c19615843f5ac72e618  numpy-1.26.1-cp311-cp311-win_amd64.whl
3aad6bc72db50e9cc88aa5813e8f35bd  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
fd62f65ae7798dbda9a3f7af7aa5c8db  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
104d939e080f1baf0a56aed1de0e79e3  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44b56c96097f910bbec1420abcf3db5  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1dce230368ae5fc47dd0fe8de8ff771d  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
d93338e7d60e1d294ca326450e99806b  numpy-1.26.1-cp312-cp312-win32.whl
a1832f46521335c1ee4c56dbf12e600b  numpy-1.26.1-cp312-cp312-win_amd64.whl
946fbb0b6caca9258985495532d3f9ab  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
78c2ab13d395d67d90bcd6583a6f61a8  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
0a9d80d8b646abf4ffe51fff3e075d10  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0229ba8145d4f58500873b540a55d60e  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9179fc57c03260374c86e18867c24463  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
246a3103fdbe5d891d7a8aee28875a26  numpy-1.26.1-cp39-cp39-win32.whl
4589dcb7f754fade6ea3946416bee638  numpy-1.26.1-cp39-cp39-win_amd64.whl
3af340d5487a6c045f00fe5eb889957c  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
28aece4f1ceb92ec463aa353d4a91c8b  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bbd0461a1e31017b05509e9971b3478e  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
2d770f4c281d405b690c4bcb3dbe99e2  numpy-1.26.1.tar.gz
SHA256
82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297  numpy-1.26.1-cp310-cp310-win32.whl
d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab  numpy-1.26.1-cp310-cp310-win_amd64.whl
cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b  numpy-1.26.1-cp311-cp311-win32.whl
3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53  numpy-1.26.1-cp311-cp311-win_amd64.whl
1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66  numpy-1.26.1-cp312-cp312-win32.whl
9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7  numpy-1.26.1-cp312-cp312-win_amd64.whl
bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104  numpy-1.26.1-cp39-cp39-win32.whl
59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2  numpy-1.26.1-cp39-cp39-win_amd64.whl
06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe  numpy-1.26.1.tar.gz

Configuration

📅 Schedule: Branch creation - "before 4am on the first day of the month" (UTC), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR has been generated by Renovate Bot.

@cq-bot cq-bot added the automerge Add to automerge PRs once requirements are met label Nov 1, 2023
@kodiakhq kodiakhq bot merged commit 3a3a2be into main Nov 1, 2023
5 checks passed
@kodiakhq kodiakhq bot deleted the renovate/numpy-1.x branch November 1, 2023 01:54
@cq-bot cq-bot mentioned this pull request Nov 1, 2023
kodiakhq bot pushed a commit that referenced this pull request Nov 10, 2023
🤖 I have created a release *beep* *boop*
---


## [0.1.8](v0.1.7...v0.1.8) (2023-11-10)


### Bug Fixes

* **deps:** Update `pyarrow` to `v14.0.1` [SECURITY] ([#83](#83)) ([36f52e3](36f52e3))
* **deps:** Update dependency black to v23.10.1 ([#80](#80)) ([e096751](e096751))
* **deps:** Update dependency cloudquery-plugin-pb to v0.0.20 ([#82](#82)) ([ea4b0b0](ea4b0b0))
* **deps:** Update dependency grpcio to v1.59.2 ([#73](#73)) ([d0775b0](d0775b0))
* **deps:** Update dependency grpcio-tools to v1.59.2 ([#74](#74)) ([8626aa2](8626aa2))
* **deps:** Update dependency numpy to v1.26.1 ([#76](#76)) ([3a3a2be](3a3a2be))
* **deps:** Update dependency packaging to v23.2 ([#81](#81)) ([956db38](956db38))
* **deps:** Update dependency pandas to v2.1.2 ([#77](#77)) ([1e3d7da](1e3d7da))
* **deps:** Update dependency protobuf to v4.24.4 ([#78](#78)) ([8c68799](8c68799))
* **deps:** Update dependency pytest to v7.4.3 ([#79](#79)) ([2bda782](2bda782))

---
This PR was generated with [Release Please](https://github.com/googleapis/release-please). See [documentation](https://github.com/googleapis/release-please#release-please).
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
automerge Add to automerge PRs once requirements are met
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants