-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrocket-dae-builder.py
77 lines (63 loc) · 1.2 KB
/
rocket-dae-builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from casadi import (
DaeBuilder,
integrator,
hcat,
vcat,
)
# Constants
N = 21
g = 9.81 # earth's gravity m/s2
dae = DaeBuilder()
# Add input expressions
a = dae.add_p('a')
b = dae.add_p('b')
u = dae.add_u('u')
h = dae.add_x('h')
v = dae.add_x('v')
m = dae.add_x('m')
# Add output expressions
hdot = v
vdot = (u-a*v**2)/m-g
mdot = -b*u**2
dae.add_ode('hdot', hdot)
dae.add_ode('vdot', vdot)
dae.add_ode('mdot', mdot)
# Specify initial conditions
dae.set_start('h', 0)
dae.set_start('v', 0)
dae.set_start('m', 1)
# Add meta information
dae.set_unit('h','m')
dae.set_unit('v','m/s')
dae.set_unit('m','kg')
# Display DAE
dae.disp(True)
### Create ODE solver function
ode_f = dae.create('f', ['x','u','p'], ['ode'])
print("ode_f: ", ode_f)
x0 = [2,3,1]
u0 = 2
p0 = [2,3,u0]
# Solve ODE
r = ode_f(x0, u0, p0)
print("x_dot: ", r)
### Simulate system
# Create integrator
daeSetup = {
'x': vcat(dae.x),
'p': vcat([*dae.p, *dae.u]),
'ode': vcat(dae.ode),
}
I = integrator('F', 'idas', daeSetup)
print(I)
# Create vectors
X = [2,3,1]
u0 = 2
P = [2,3,u0]
J = 0
for k in range(N):
P[2] = P[2] * (1/(k+1))
Ik = I(x0=X, p=P)
X = Ik['xf']
J += Ik['qf']
print(f'X: {X}\nP: {P}\nJ: {J}')