-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScanner.py
157 lines (126 loc) · 3.76 KB
/
Scanner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Scanner
-------
Provides
1. grayscaling an image
2. blur an image
3. make a binary mask using canny edge detector
4. find the biggest contour (perimeter)
5. Converts the gray scale image to a binary threshold image
"""
from typing import Tuple
import cv2
import numpy as np
def grayScale(img : np.ndarray) -> np.ndarray:
"""
Converts an image to grayscale
Args:
-----
img (np.ndarray): input image
Returns:
--------
np.ndarray: grayscale image
"""
return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
def blur(img : np.ndarray, k: int = 3, std : int = 0) -> np.ndarray:
"""
blurs the image using gaussian blur
Args:
-----
img (np.ndarray): input image (grayscale)
k (int, optional): kernel size. Defaults to 3.
Returns:
--------
np.ndarray: denoised image
Theory:
-------
Gaussian blur uses a kernel and convoles
it with the input image, it reduces the
salt and paper noises in the image
"""
return cv2.GaussianBlur(img, (k,k), std)
def binary(img : np.ndarray) -> np.ndarray:
"""
finds the edges in the image, and make a binary
mask, 255 for edges, 0 for rest
Args:
-----
img (np.ndarray): input image (grayscale)
Returns:
--------
np.ndarray: binary image with edges highlighted
Theory:
-------
Canny edge detector uses Sobel method to find the
edges. Sobel method essentially find the gradient
of intensity in x and y direction.
"""
return cv2.Canny(img, 100, 255)
def retBiggestContour(img : np.ndarray) -> Tuple[np.ndarray, Tuple[int, int]]:
"""
returns the biggest contour and width, height
of the minimum area rectangle that bounds it
Args:
-----
img (np.ndarray): input image (B&W from canny edge)
Returns:
--------
Tuple[np.ndarray, Tuple[int, int]]
"""
contours, _ = cv2.findContours(img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnt = sorted(contours, key = cv2.contourArea)[-1]
_, (w,h), angle = cv2.minAreaRect(cnt)
w,h = int(w), int(h)
if angle > 45 or angle < -45:
w,h = h,w
return cnt, (w,h)
def extract(img : np.ndarray,
cnt : np.ndarray,
w : int,
h : int
) -> np.ndarray:
"""
crops out the page from the entire image
Args:
-----
img (np.ndarray): input image
cnt (np.ndarray): contour
w (int): width of min area rect
h (int): hieght of min area rect
Returns:
--------
np.ndarray: the cropped out image
"""
cnt = cnt.reshape(cnt.shape[0], cnt.shape[-1])
# the corners have extreme x, y coordinates
s1 = sorted(cnt, key = lambda x : (x[0], x[1]))
s2 = sorted(cnt, key = lambda x : (x[1], x[0]))
corner1, corner3 = s1[0], s1[-1]
corner2, corner4 = s2[0], s2[-1]
corners = np.array([corner1, corner2, corner3, corner4])
target_corners = np.array([(0,0), (w,0), (w,h), (0,h)])
H, _ = cv2.findHomography(corners, target_corners, params = None)
transformed_image = cv2.warpPerspective(
img, H, (img.shape[1], img.shape[0]))
transformed_image = transformed_image[:h, :w]
return transformed_image
def transform(img : np.ndarray) -> np.ndarray:
"""
converts the image to B&W
Args:
-----
img (np.ndarray): input image
Returns:
np.ndarray: B&W image
"""
T = cv2.GaussianBlur(img, (11,11),0)-10
return (img > T).astype(np.uint8) * 255
if __name__ == "__main__":
img = cv2.imread("image.jpg")
gray = grayScale(img)
blurred = blur(gray)
edged = binary(blurred)
cnt, (w,h) = retBiggestContour(edged)
img = extract(gray, cnt, w, h)
img = transform(img)
cv2.imwrite("transformed.jpg", img)