-
Notifications
You must be signed in to change notification settings - Fork 0
/
group_by_shared_mem_hashtable.cuh
277 lines (260 loc) · 10.4 KB
/
group_by_shared_mem_hashtable.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#pragma once
#include "group_by_hashtable.cuh"
#define SHARED_MEM_HT_ENTRY_BITS 4
#define SHARED_MEM_HT_EMPTY_GROUP_VAL ((uint64_t)-3)
#define SHARED_MEM_HT_OVERSIZE_BITS 1
#define SHARED_MEM_HT_MAX_GROUP_BITS \
(CUDA_SHARED_MEM_BITS_PER_BLOCK - SHARED_MEM_HT_OVERSIZE_BITS - \
SHARED_MEM_HT_ENTRY_BITS)
struct shared_mem_ht_entry {
uint64_t group;
uint64_t aggregate;
};
GROUP_BY_HASHTABLE_FORWARD_REQUIREMENTS(group_by_shared_mem_hashtable)
static inline bool approach_shared_mem_hashtable_available(
int group_bits, size_t row_count, int grid_dim, int block_dim,
int stream_count)
{
if (!grid_dim || !block_dim) return false;
return group_bits <= SHARED_MEM_HT_MAX_GROUP_BITS;
}
template <int MAX_GROUP_BITS>
__global__ void kernel_shared_mem_ht(
db_table input, group_ht_entry<>* hashtable, int stream_count,
int stream_idx)
{
// the ternary guards against template instantiations that would
// cause ptxas error during compilations by requiring
// too much shared memory even if these instantiations are never used
constexpr size_t SHARED_MEM_HT_CAPACITY =
(MAX_GROUP_BITS <= SHARED_MEM_HT_MAX_GROUP_BITS)
? (size_t)1 << (MAX_GROUP_BITS + SHARED_MEM_HT_OVERSIZE_BITS)
: 1;
constexpr size_t SHARED_MEM_HT_MASK = SHARED_MEM_HT_CAPACITY - 1;
__shared__ bool empty_group_used;
__shared__ uint64_t empty_group_aggregate;
__shared__ shared_mem_ht_entry shared_mem_ht[SHARED_MEM_HT_CAPACITY];
int tid = threadIdx.x + blockIdx.x * blockDim.x +
stream_idx * blockDim.x * gridDim.x;
int stride = blockDim.x * gridDim.x * stream_count;
if (threadIdx.x == 0) {
empty_group_used = false;
empty_group_aggregate = 0;
}
for (int i = threadIdx.x; i < SHARED_MEM_HT_CAPACITY; i += blockDim.x) {
shared_mem_ht[i].group = SHARED_MEM_HT_EMPTY_GROUP_VAL;
shared_mem_ht[i].aggregate = 0;
}
__syncthreads();
for (size_t i = tid; i < input.row_count; i += stride) {
uint64_t group = input.group_col[i];
uint64_t aggregate = input.aggregate_col[i];
if (group == SHARED_MEM_HT_EMPTY_GROUP_VAL) {
empty_group_used = true;
atomicAdd((cudaUInt64_t*)&empty_group_aggregate, aggregate);
continue;
}
shared_mem_ht_entry* hte = &shared_mem_ht[group & SHARED_MEM_HT_MASK];
while (true) {
if (hte->group == group) break;
if (hte->group == SHARED_MEM_HT_EMPTY_GROUP_VAL) {
uint64_t found = atomicCAS(
(cudaUInt64_t*)&hte->group, SHARED_MEM_HT_EMPTY_GROUP_VAL,
group);
if (found == SHARED_MEM_HT_EMPTY_GROUP_VAL || found == group) {
break;
}
}
if (hte != &shared_mem_ht[SHARED_MEM_HT_CAPACITY - 1]) {
hte++;
}
else {
hte = &shared_mem_ht[0];
}
}
atomicAdd((cudaUInt64_t*)&hte->aggregate, aggregate);
}
__syncthreads();
if (threadIdx.x == 0 && empty_group_used) {
group_ht_insert<MAX_GROUP_BITS, false>(
hashtable, SHARED_MEM_HT_EMPTY_GROUP_VAL, empty_group_aggregate);
}
for (int i = threadIdx.x; i < SHARED_MEM_HT_CAPACITY; i += blockDim.x) {
if (shared_mem_ht[i].group != SHARED_MEM_HT_EMPTY_GROUP_VAL) {
group_ht_insert<MAX_GROUP_BITS, false>(
hashtable, shared_mem_ht[i].group, shared_mem_ht[i].aggregate);
}
}
}
template <int MAX_GROUP_BITS>
__global__ void kernel_shared_mem_ht_optimistic(
db_table input, group_ht_entry<>* hashtable, int stream_count,
int stream_idx)
{
// the ternary guards against template instantiations that would
// cause ptxas error during compilations by requiring
// too much shared memory even if these instantiations are never used
constexpr size_t SHARED_MEM_HT_CAPACITY =
(MAX_GROUP_BITS <= SHARED_MEM_HT_MAX_GROUP_BITS)
? (size_t)1 << (MAX_GROUP_BITS + SHARED_MEM_HT_OVERSIZE_BITS)
: 1;
constexpr size_t SHARED_MEM_HT_MASK = SHARED_MEM_HT_CAPACITY - 1;
constexpr size_t MAX_GROUPS = ((size_t)1 << MAX_GROUP_BITS);
__shared__ int empty_group_used;
__shared__ uint64_t empty_group_aggregate;
__shared__ shared_mem_ht_entry shared_mem_ht[SHARED_MEM_HT_CAPACITY];
__shared__ size_t groups_found;
__shared__ size_t collisions;
int tid = threadIdx.x + blockIdx.x * blockDim.x +
stream_idx * blockDim.x * gridDim.x;
int stride = blockDim.x * gridDim.x * stream_count;
if (threadIdx.x == 0) {
groups_found = 0;
collisions = 0;
empty_group_used = 0;
empty_group_aggregate = 0;
}
for (int i = threadIdx.x; i < SHARED_MEM_HT_CAPACITY; i += blockDim.x) {
shared_mem_ht[i].group = SHARED_MEM_HT_EMPTY_GROUP_VAL;
shared_mem_ht[i].aggregate = 0;
}
__syncthreads();
size_t i = tid;
size_t last_check = 0;
for (; i < input.row_count; i += stride) {
uint64_t group = input.group_col[i];
uint64_t aggregate = input.aggregate_col[i];
if (group == SHARED_MEM_HT_EMPTY_GROUP_VAL) {
if (empty_group_used == 0) {
if (atomicCAS(&empty_group_used, 0, 1) == 0) {
atomicAdd((cudaUInt64_t*)&groups_found, 1);
}
}
atomicAdd((cudaUInt64_t*)&empty_group_aggregate, aggregate);
continue;
}
shared_mem_ht_entry* hte = &shared_mem_ht[group & SHARED_MEM_HT_MASK];
while (true) {
if (hte->group == group) break;
if (hte->group == SHARED_MEM_HT_EMPTY_GROUP_VAL) {
uint64_t found = atomicCAS(
(cudaUInt64_t*)&hte->group, SHARED_MEM_HT_EMPTY_GROUP_VAL,
group);
if (found == group) break;
if (found == SHARED_MEM_HT_EMPTY_GROUP_VAL) {
atomicAdd((cudaUInt64_t*)&groups_found, 1);
if (hte != &shared_mem_ht[group & SHARED_MEM_HT_MASK]) {
atomicAdd((cudaUInt64_t*)&collisions, 1);
}
break;
}
}
if (hte != &shared_mem_ht[SHARED_MEM_HT_CAPACITY - 1]) {
hte++;
}
else {
hte = &shared_mem_ht[0];
}
}
atomicAdd((cudaUInt64_t*)&hte->aggregate, aggregate);
if (i - last_check > MAX_GROUPS) {
last_check = i;
if (groups_found == MAX_GROUPS) {
i += stride;
break;
}
}
}
// all existing groups found. use optimized codepath
if (empty_group_used) {
for (; i < input.row_count; i += stride) {
uint64_t group = input.group_col[i];
uint64_t aggregate = input.aggregate_col[i];
if (group == SHARED_MEM_HT_EMPTY_GROUP_VAL) {
atomicAdd((cudaUInt64_t*)&empty_group_aggregate, aggregate);
continue;
}
shared_mem_ht_entry* hte =
&shared_mem_ht[group & SHARED_MEM_HT_MASK];
while (true) {
if (hte->group == group) break;
if (hte != &shared_mem_ht[SHARED_MEM_HT_CAPACITY - 1]) {
hte++;
}
else {
hte = &shared_mem_ht[0];
}
}
atomicAdd((cudaUInt64_t*)&hte->aggregate, aggregate);
}
}
else if (collisions) {
for (; i < input.row_count; i += stride) {
uint64_t group = input.group_col[i];
shared_mem_ht_entry* hte =
&shared_mem_ht[group & SHARED_MEM_HT_MASK];
while (true) {
if (hte->group == group) break;
if (hte != &shared_mem_ht[SHARED_MEM_HT_CAPACITY - 1]) {
hte++;
}
else {
hte = &shared_mem_ht[0];
}
}
atomicAdd((cudaUInt64_t*)&hte->aggregate, input.aggregate_col[i]);
}
}
else {
for (; i < input.row_count; i += stride) {
uint64_t group = input.group_col[i];
shared_mem_ht_entry* hte =
&shared_mem_ht[group & SHARED_MEM_HT_MASK];
atomicAdd((cudaUInt64_t*)&hte->aggregate, input.aggregate_col[i]);
}
}
__syncthreads();
if (threadIdx.x == 0 && empty_group_used) {
group_ht_insert<MAX_GROUP_BITS, false>(
hashtable, SHARED_MEM_HT_EMPTY_GROUP_VAL, empty_group_aggregate);
}
for (int i = threadIdx.x; i < SHARED_MEM_HT_CAPACITY; i += blockDim.x) {
if (shared_mem_ht[i].group != SHARED_MEM_HT_EMPTY_GROUP_VAL) {
group_ht_insert<MAX_GROUP_BITS, false>(
hashtable, shared_mem_ht[i].group, shared_mem_ht[i].aggregate);
}
}
}
template <int MAX_GROUP_BITS, bool OPTIMISTIC>
void group_by_shared_mem_hashtable(
gpu_data* gd, int grid_dim, int block_dim, int stream_count,
cudaStream_t* streams, cudaEvent_t* events, cudaEvent_t start_event,
cudaEvent_t end_event)
{
CUDA_TRY(cudaEventRecord(start_event));
// reset number of groups found
size_t zero = 0;
cudaMemcpyToSymbol(
group_ht_groups_found, &zero, sizeof(zero), 0, cudaMemcpyHostToDevice);
// for stream_count 0 we use the default stream,
// but thats actually still one stream not zero
int actual_stream_count = stream_count ? stream_count : 1;
for (int i = 0; i < actual_stream_count; i++) {
cudaStream_t stream = stream_count ? streams[i] : 0;
if (OPTIMISTIC) {
kernel_shared_mem_ht_optimistic<MAX_GROUP_BITS>
<<<grid_dim, block_dim, 0, stream>>>(
gd->input, group_ht_entry<>::table, actual_stream_count, i);
}
else {
kernel_shared_mem_ht<MAX_GROUP_BITS>
<<<grid_dim, block_dim, 0, stream>>>(
gd->input, group_ht_entry<>::table, actual_stream_count, i);
}
// if we have only one stream there is no need for waiting events
if (stream_count > 1) cudaEventRecord(events[i], stream);
}
group_by_hashtable_writeout<MAX_GROUP_BITS>(
gd, grid_dim, block_dim, stream_count, streams, events, start_event,
end_event);
}