-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconcretePostFilterStain.py
53 lines (43 loc) · 2.14 KB
/
concretePostFilterStain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# This script reads the stainMask images and the concreteMask folder to create filteredStain folder which has those result images.
import cv2
import os
import configparser
import numpy as np
# Load the INI file and parse it
config = configparser.ConfigParser()
config.read("config.ini") # Replace with the actual path to your INI file
# Paths for the concreteMask images, raw images, and output images
# Read from the INI file
# mask_dir = config["Segmentation"]["mask_directory"]
# raw_dir = config["Settings"]["raw_directory"]
# output_dir = config["Overlay"]["overlay_transparent_directory"]
concreteMask_dir = config["CrackSegmentation"]["mask_directory"].replace("crackmask", "concretemask")
stainMask_dir = config["CrackSegmentation"]["mask_directory"].replace("crackmask", "stainmask")
output_dir = config["CrackSegmentation"]["mask_directory"].replace("crackmask", "filteredStainMasks")
# Ensure the output directory exists
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Iterate over the files in the mask directory
for concreteMask_name in os.listdir(concreteMask_dir):
# Extract the image name from the filename
stainMask_name = concreteMask_name.split(".")[0] + ".png"
# Load the mask and raw images
mask_image = cv2.imread(
os.path.join(concreteMask_dir, concreteMask_name), cv2.IMREAD_GRAYSCALE
)
original_image = cv2.imread(os.path.join(stainMask_dir, stainMask_name))
if mask_image is None or original_image is None:
print(f"Error reading {concreteMask_name} or {stainMask_name}. Skipping...")
continue
# Ensure the original image and mask have the same dimensions
if original_image.shape[:2] != mask_image.shape[:2]:
mask_image = cv2.resize(
mask_image, (original_image.shape[1], original_image.shape[0])
)
# Apply the mask to the original image
masked_original = cv2.bitwise_and(original_image, original_image, mask=mask_image)
# Save the overlaid image to the output directory
output_name = os.path.join(output_dir, stainMask_name)
cv2.imwrite(output_name, masked_original)
print(f"Saved {output_name}")
print("Processing complete!")