-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathfactory.go
344 lines (311 loc) · 13.8 KB
/
factory.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// Copyright 2018 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package norm
import (
"github.com/cockroachdb/cockroach/pkg/sql/opt"
"github.com/cockroachdb/cockroach/pkg/sql/opt/cat"
"github.com/cockroachdb/cockroach/pkg/sql/opt/memo"
"github.com/cockroachdb/cockroach/pkg/sql/opt/props/physical"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/types"
"github.com/cockroachdb/cockroach/pkg/util/errorutil"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/errors"
)
// ReplaceFunc is the callback function passed to the Factory.Replace method.
// It is called with each child of the expression passed to Replace. See the
// Replace method for more details.
type ReplaceFunc func(e opt.Expr) opt.Expr
// MatchedRuleFunc defines the callback function for the NotifyOnMatchedRule
// event supported by the optimizer and factory. It is invoked each time an
// optimization rule (Normalize or Explore) has been matched. The name of the
// matched rule is passed as a parameter. If the function returns false, then
// the rule is not applied (i.e. skipped).
type MatchedRuleFunc func(ruleName opt.RuleName) bool
// AppliedRuleFunc defines the callback function for the NotifyOnAppliedRule
// event supported by the optimizer and factory. It is invoked each time an
// optimization rule (Normalize or Explore) has been applied.
//
// The function is called with the name of the rule and the expressions it
// affected. For a normalization rule, the source is always nil, and the target
// is the expression constructed by the replace pattern. For an exploration
// rule, the source is the expression matched by the rule, and the target is
// the first expression constructed by the replace pattern. If no expressions
// were constructed, it is nil. Additional expressions beyond the first can be
// accessed by following the NextExpr links on the target expression.
type AppliedRuleFunc func(ruleName opt.RuleName, source, target opt.Expr)
// Factory constructs a normalized expression tree within the memo. As each
// kind of expression is constructed by the factory, it transitively runs
// normalization transformations defined for that expression type. This may
// result in the construction of a different type of expression than what was
// requested. If, after normalization, the expression is already part of the
// memo, then construction is a no-op. Otherwise, a new memo group is created,
// with the normalized expression as its first and only expression.
//
// Factory is largely auto-generated by optgen. The generated code can be found
// in factory.og.go. The factory.go file contains helper functions that are
// invoked by normalization patterns. While most patterns are specified in the
// Optgen DSL, the factory always calls the `onConstruct` method as its last
// step, in order to allow any custom manual code to execute.
type Factory struct {
evalCtx *tree.EvalContext
// mem is the Memo data structure that the factory builds.
mem *memo.Memo
// funcs is the struct used to call all custom match and replace functions
// used by the normalization rules. It wraps an unnamed xfunc.CustomFuncs,
// so it provides a clean interface for calling functions from both the norm
// and xfunc packages using the same prefix.
funcs CustomFuncs
// matchedRule is the callback function that is invoked each time a normalize
// rule has been matched by the factory. It can be set via a call to the
// NotifyOnMatchedRule method.
matchedRule MatchedRuleFunc
// appliedRule is the callback function which is invoked each time a normalize
// rule has been applied by the factory. It can be set via a call to the
// NotifyOnAppliedRule method.
appliedRule AppliedRuleFunc
// catalog is the opt catalog, used to resolve names during constant folding
// of special metadata queries like 'table_name'::regclass.
catalog cat.Catalog
}
// Init initializes a Factory structure with a new, blank memo structure inside.
// This must be called before the factory can be used (or reused).
func (f *Factory) Init(evalCtx *tree.EvalContext, catalog cat.Catalog) {
// Initialize (or reinitialize) the memo.
if f.mem == nil {
f.mem = &memo.Memo{}
}
f.mem.Init(evalCtx)
f.evalCtx = evalCtx
f.catalog = catalog
f.funcs.Init(f)
f.matchedRule = nil
f.appliedRule = nil
}
// DetachMemo extracts the memo from the optimizer, and then re-initializes the
// factory so that its reuse will not impact the detached memo. This method is
// used to extract a read-only memo during the PREPARE phase.
//
// Before extracting the memo, DetachMemo first clears all column statistics in
// the memo. This is used to free up the potentially large amount of memory
// used by histograms. This does not affect the quality of the plan used at
// execution time, since the stats are just recalculated anyway when
// placeholders are assigned. If there are no placeholders, there is no need
// for column statistics, since the memo is already fully optimized.
func (f *Factory) DetachMemo() *memo.Memo {
f.mem.ClearColStats(f.mem.RootExpr())
detach := f.mem
f.mem = nil
f.Init(f.evalCtx, nil /* catalog */)
return detach
}
// DisableOptimizations disables all transformation rules. The unaltered input
// expression tree becomes the output expression tree (because no transforms
// are applied).
func (f *Factory) DisableOptimizations() {
f.NotifyOnMatchedRule(func(opt.RuleName) bool { return false })
}
// NotifyOnMatchedRule sets a callback function which is invoked each time a
// normalize rule has been matched by the factory. If matchedRule is nil, then
// no further notifications are sent, and all rules are applied by default. In
// addition, callers can invoke the DisableOptimizations convenience method to
// disable all rules.
func (f *Factory) NotifyOnMatchedRule(matchedRule MatchedRuleFunc) {
f.matchedRule = matchedRule
}
// NotifyOnAppliedRule sets a callback function which is invoked each time a
// normalize rule has been applied by the factory. If appliedRule is nil, then
// no further notifications are sent.
func (f *Factory) NotifyOnAppliedRule(appliedRule AppliedRuleFunc) {
f.appliedRule = appliedRule
}
// Memo returns the memo structure that the factory is operating upon.
func (f *Factory) Memo() *memo.Memo {
return f.mem
}
// Metadata returns the query-specific metadata, which includes information
// about the columns and tables used in this particular query.
func (f *Factory) Metadata() *opt.Metadata {
return f.mem.Metadata()
}
// CustomFuncs returns the set of custom functions used by normalization rules.
func (f *Factory) CustomFuncs() *CustomFuncs {
return &f.funcs
}
// CopyAndReplace builds this factory's memo by constructing a copy of a subtree
// that is part of another memo. That memo's metadata is copied to this
// factory's memo so that tables and columns referenced by the copied memo can
// keep the same ids. The copied subtree becomes the root of the destination
// memo, having the given physical properties.
//
// The "replace" callback function allows the caller to override the default
// traversal and cloning behavior with custom logic. It is called for each node
// in the "from" subtree, and has the choice of constructing an arbitrary
// replacement node, or delegating to the default behavior by calling
// CopyAndReplaceDefault, which constructs a copy of the source operator using
// children returned by recursive calls to the replace callback. Note that if a
// non-leaf replacement node is constructed, its inputs must be copied using
// CopyAndReplaceDefault.
//
// Sample usage:
//
// var replaceFn ReplaceFunc
// replaceFn = func(e opt.Expr) opt.Expr {
// if e.Op() == opt.PlaceholderOp {
// return f.ConstructConst(evalPlaceholder(e))
// }
//
// // Copy e, calling replaceFn on its inputs recursively.
// return f.CopyAndReplaceDefault(e, replaceFn)
// }
//
// f.CopyAndReplace(from, fromProps, replaceFn)
//
// NOTE: Callers must take care to always create brand new copies of non-
// singleton source nodes rather than referencing existing nodes. The source
// memo should always be treated as immutable, and the destination memo must be
// completely independent of it once CopyAndReplace has completed.
func (f *Factory) CopyAndReplace(
from memo.RelExpr, fromProps *physical.Required, replace ReplaceFunc,
) {
if !f.mem.IsEmpty() {
panic(errors.AssertionFailedf("destination memo must be empty"))
}
// Copy all metadata to the target memo so that referenced tables and columns
// can keep the same ids they had in the "from" memo.
f.mem.Metadata().CopyFrom(from.Memo().Metadata())
// Perform copy and replacement, and store result as the root of this
// factory's memo.
to := f.invokeReplace(from, replace).(memo.RelExpr)
f.Memo().SetRoot(to, fromProps)
}
// AssignPlaceholders is used just before execution of a prepared Memo. It makes
// a copy of the given memo, but with any placeholder values replaced by their
// assigned values. This can trigger additional normalization rules that can
// substantially rewrite the tree. Once all placeholders are assigned, the
// exploration phase can begin.
func (f *Factory) AssignPlaceholders(from *memo.Memo) (err error) {
defer func() {
if r := recover(); r != nil {
// This code allows us to propagate errors without adding lots of checks
// for `if err != nil` throughout the construction code. This is only
// possible because the code does not update shared state and does not
// manipulate locks.
if ok, e := errorutil.ShouldCatch(r); ok {
err = e
} else {
panic(r)
}
}
}()
// Copy the "from" memo to this memo, replacing any Placeholder operators as
// the copy proceeds.
var replaceFn ReplaceFunc
replaceFn = func(e opt.Expr) opt.Expr {
if placeholder, ok := e.(*memo.PlaceholderExpr); ok {
d, err := e.(*memo.PlaceholderExpr).Value.Eval(f.evalCtx)
if err != nil {
panic(err)
}
return f.ConstructConstVal(d, placeholder.DataType())
}
return f.CopyAndReplaceDefault(e, replaceFn)
}
f.CopyAndReplace(from.RootExpr().(memo.RelExpr), from.RootProps(), replaceFn)
return nil
}
// onConstructRelational is called as a final step by each factory method that
// constructs a relational expression, so that any custom manual pattern
// matching/replacement code can be run.
func (f *Factory) onConstructRelational(rel memo.RelExpr) memo.RelExpr {
// [SimplifyZeroCardinalityGroup]
// SimplifyZeroCardinalityGroup replaces a group with [0 - 0] cardinality
// with an empty values expression. It is placed here because it depends on
// the logical properties of the group in question.
if rel.Op() != opt.ValuesOp {
relational := rel.Relational()
if relational.Cardinality.IsZero() && !relational.CanHaveSideEffects {
if f.matchedRule == nil || f.matchedRule(opt.SimplifyZeroCardinalityGroup) {
values := f.funcs.ConstructEmptyValues(relational.OutputCols)
if f.appliedRule != nil {
f.appliedRule(opt.SimplifyZeroCardinalityGroup, nil, values)
}
return values
}
}
}
return rel
}
// onConstructScalar is called as a final step by each factory method that
// constructs a scalar expression, so that any custom manual pattern matching/
// replacement code can be run.
func (f *Factory) onConstructScalar(scalar opt.ScalarExpr) opt.ScalarExpr {
return scalar
}
// ----------------------------------------------------------------------
//
// Convenience construction methods.
//
// ----------------------------------------------------------------------
// ConstructZeroValues constructs a Values operator with zero rows and zero
// columns. It is used to create a dummy input for operators like CreateTable.
func (f *Factory) ConstructZeroValues() memo.RelExpr {
return f.ConstructValues(memo.EmptyScalarListExpr, &memo.ValuesPrivate{
Cols: opt.ColList{},
ID: f.Metadata().NextUniqueID(),
})
}
// ConstructJoin constructs the join operator that corresponds to the given join
// operator type.
func (f *Factory) ConstructJoin(
joinOp opt.Operator, left, right memo.RelExpr, on memo.FiltersExpr, private *memo.JoinPrivate,
) memo.RelExpr {
switch joinOp {
case opt.InnerJoinOp:
return f.ConstructInnerJoin(left, right, on, private)
case opt.InnerJoinApplyOp:
return f.ConstructInnerJoinApply(left, right, on, private)
case opt.LeftJoinOp:
return f.ConstructLeftJoin(left, right, on, private)
case opt.LeftJoinApplyOp:
return f.ConstructLeftJoinApply(left, right, on, private)
case opt.RightJoinOp:
return f.ConstructRightJoin(left, right, on, private)
case opt.FullJoinOp:
return f.ConstructFullJoin(left, right, on, private)
case opt.SemiJoinOp:
return f.ConstructSemiJoin(left, right, on, private)
case opt.SemiJoinApplyOp:
return f.ConstructSemiJoinApply(left, right, on, private)
case opt.AntiJoinOp:
return f.ConstructAntiJoin(left, right, on, private)
case opt.AntiJoinApplyOp:
return f.ConstructAntiJoinApply(left, right, on, private)
}
panic(errors.AssertionFailedf("unexpected join operator: %v", log.Safe(joinOp)))
}
// ConstructConstVal constructs one of the constant value operators from the
// given datum value. While most constants are represented with Const, there are
// special-case operators for True, False, and Null, to make matching easier.
// Null operators require the static type to be specified, so that rewrites do
// not change it.
func (f *Factory) ConstructConstVal(d tree.Datum, t *types.T) opt.ScalarExpr {
if d == tree.DNull {
return f.ConstructNull(t)
}
if boolVal, ok := d.(*tree.DBool); ok {
// Map True/False datums to True/False operator.
if *boolVal {
return memo.TrueSingleton
}
return memo.FalseSingleton
}
return f.ConstructConst(d, t)
}