-
Notifications
You must be signed in to change notification settings - Fork 480
/
Copy pathreader.go
4338 lines (4016 loc) · 147 KB
/
reader.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
// of this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
package sstable
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"io"
"os"
"sort"
"sync"
"time"
"unsafe"
"github.com/cespare/xxhash/v2"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/pebble/internal/base"
"github.com/cockroachdb/pebble/internal/bytealloc"
"github.com/cockroachdb/pebble/internal/cache"
"github.com/cockroachdb/pebble/internal/crc"
"github.com/cockroachdb/pebble/internal/invariants"
"github.com/cockroachdb/pebble/internal/keyspan"
"github.com/cockroachdb/pebble/internal/manifest"
"github.com/cockroachdb/pebble/internal/private"
"github.com/cockroachdb/pebble/objstorage"
"github.com/cockroachdb/pebble/objstorage/objstorageprovider"
"github.com/cockroachdb/pebble/objstorage/objstorageprovider/objiotracing"
)
var errCorruptIndexEntry = base.CorruptionErrorf("pebble/table: corrupt index entry")
var errReaderClosed = errors.New("pebble/table: reader is closed")
// decodeBlockHandle returns the block handle encoded at the start of src, as
// well as the number of bytes it occupies. It returns zero if given invalid
// input. A block handle for a data block or a first/lower level index block
// should not be decoded using decodeBlockHandle since the caller may validate
// that the number of bytes decoded is equal to the length of src, which will
// be false if the properties are not decoded. In those cases the caller
// should use decodeBlockHandleWithProperties.
func decodeBlockHandle(src []byte) (BlockHandle, int) {
offset, n := binary.Uvarint(src)
length, m := binary.Uvarint(src[n:])
if n == 0 || m == 0 {
return BlockHandle{}, 0
}
return BlockHandle{offset, length}, n + m
}
// decodeBlockHandleWithProperties returns the block handle and properties
// encoded in src. src needs to be exactly the length that was encoded. This
// method must be used for data block and first/lower level index blocks. The
// properties in the block handle point to the bytes in src.
func decodeBlockHandleWithProperties(src []byte) (BlockHandleWithProperties, error) {
bh, n := decodeBlockHandle(src)
if n == 0 {
return BlockHandleWithProperties{}, errors.Errorf("invalid BlockHandle")
}
return BlockHandleWithProperties{
BlockHandle: bh,
Props: src[n:],
}, nil
}
func encodeBlockHandle(dst []byte, b BlockHandle) int {
n := binary.PutUvarint(dst, b.Offset)
m := binary.PutUvarint(dst[n:], b.Length)
return n + m
}
func encodeBlockHandleWithProperties(dst []byte, b BlockHandleWithProperties) []byte {
n := encodeBlockHandle(dst, b.BlockHandle)
dst = append(dst[:n], b.Props...)
return dst
}
// block is a []byte that holds a sequence of key/value pairs plus an index
// over those pairs.
type block []byte
// Iterator iterates over an entire table of data.
type Iterator interface {
base.InternalIterator
// NextPrefix implements (base.InternalIterator).NextPrefix.
NextPrefix(succKey []byte) (*InternalKey, base.LazyValue)
// MaybeFilteredKeys may be called when an iterator is exhausted to indicate
// whether or not the last positioning method may have skipped any keys due
// to block-property filters. This is used by the Pebble levelIter to
// control when an iterator steps to the next sstable.
//
// MaybeFilteredKeys may always return false positives, that is it may
// return true when no keys were filtered. It should only be called when the
// iterator is exhausted. It must never return false negatives when the
// iterator is exhausted.
MaybeFilteredKeys() bool
SetCloseHook(fn func(i Iterator) error)
}
// Iterator positioning optimizations and singleLevelIterator and
// twoLevelIterator:
//
// An iterator is absolute positioned using one of the Seek or First or Last
// calls. After absolute positioning, there can be relative positioning done
// by stepping using Prev or Next.
//
// We implement optimizations below where an absolute positioning call can in
// some cases use the current position to do less work. To understand these,
// we first define some terms. An iterator is bounds-exhausted if the bounds
// (upper of lower) have been reached. An iterator is data-exhausted if it has
// the reached the end of the data (forward or reverse) in the sstable. A
// singleLevelIterator only knows a local-data-exhausted property since when
// it is used as part of a twoLevelIterator, the twoLevelIterator can step to
// the next lower-level index block.
//
// The bounds-exhausted property is tracked by
// singleLevelIterator.exhaustedBounds being +1 (upper bound reached) or -1
// (lower bound reached). The same field is reused by twoLevelIterator. Either
// may notice the exhaustion of the bound and set it. Note that if
// singleLevelIterator sets this property, it is not a local property (since
// the bound has been reached regardless of whether this is in the context of
// the twoLevelIterator or not).
//
// The data-exhausted property is tracked in a more subtle manner. We define
// two predicates:
// - partial-local-data-exhausted (PLDE):
// i.data.isDataInvalidated() || !i.data.valid()
// - partial-global-data-exhausted (PGDE):
// i.index.isDataInvalidated() || !i.index.valid() || i.data.isDataInvalidated() ||
// !i.data.valid()
//
// PLDE is defined for a singleLevelIterator. PGDE is defined for a
// twoLevelIterator. Oddly, in our code below the singleLevelIterator does not
// know when it is part of a twoLevelIterator so it does not know when its
// property is local or global.
//
// Now to define data-exhausted:
// - Prerequisite: we must know that the iterator has been positioned and
// i.err is nil.
// - bounds-exhausted must not be true:
// If bounds-exhausted is true, we have incomplete knowledge of
// data-exhausted since PLDE or PGDE could be true because we could have
// chosen not to load index block or data block and figured out that the
// bound is exhausted (due to block property filters filtering out index and
// data blocks and going past the bound on the top level index block). Note
// that if we tried to separate out the BPF case from others we could
// develop more knowledge here.
// - PGDE is true for twoLevelIterator. PLDE is true if it is a standalone
// singleLevelIterator. !PLDE or !PGDE of course imply that data-exhausted
// is not true.
//
// An implication of the above is that if we are going to somehow utilize
// knowledge of data-exhausted in an optimization, we must not forget the
// existing value of bounds-exhausted since by forgetting the latter we can
// erroneously think that data-exhausted is true. Bug #2036 was due to this
// forgetting.
//
// Now to the two categories of optimizations we currently have:
// - Monotonic bounds optimization that reuse prior iterator position when
// doing seek: These only work with !data-exhausted. We could choose to make
// these work with data-exhausted but have not bothered because in the
// context of a DB if data-exhausted were true, the DB would move to the
// next file in the level. Note that this behavior of moving to the next
// file is not necessarily true for L0 files, so there could be some benefit
// in the future in this optimization. See the WARNING-data-exhausted
// comments if trying to optimize this in the future.
// - TrySeekUsingNext optimizations: these work regardless of exhaustion
// state.
//
// Implementation detail: In the code PLDE only checks that
// i.data.isDataInvalidated(). This narrower check is safe, since this is a
// subset of the set expressed by the OR expression. Also, it is not a
// de-optimization since whenever we exhaust the iterator we explicitly call
// i.data.invalidate(). PGDE checks i.index.isDataInvalidated() &&
// i.data.isDataInvalidated(). Again, this narrower check is safe, and not a
// de-optimization since whenever we exhaust the iterator we explicitly call
// i.index.invalidate() and i.data.invalidate(). The && is questionable -- for
// now this is a bit of defensive code. We should seriously consider removing
// it, since defensive code suggests we are not confident about our invariants
// (and if we are not confident, we need more invariant assertions, not
// defensive code).
//
// TODO(sumeer): remove the aforementioned defensive code.
// singleLevelIterator iterates over an entire table of data. To seek for a given
// key, it first looks in the index for the block that contains that key, and then
// looks inside that block.
type singleLevelIterator struct {
ctx context.Context
cmp Compare
// Global lower/upper bound for the iterator.
lower []byte
upper []byte
bpfs *BlockPropertiesFilterer
// Per-block lower/upper bound. Nil if the bound does not apply to the block
// because we determined the block lies completely within the bound.
blockLower []byte
blockUpper []byte
reader *Reader
// vState will be set iff the iterator is constructed for virtual sstable
// iteration.
vState *virtualState
// endKeyInclusive is set to force the iterator to treat the upper field as
// inclusive while iterating instead of exclusive.
endKeyInclusive bool
index blockIter
data blockIter
dataRH objstorage.ReadHandle
dataRHPrealloc objstorageprovider.PreallocatedReadHandle
// dataBH refers to the last data block that the iterator considered
// loading. It may not actually have loaded the block, due to an error or
// because it was considered irrelevant.
dataBH BlockHandle
vbReader *valueBlockReader
// vbRH is the read handle for value blocks, which are in a different
// part of the sstable than data blocks.
vbRH objstorage.ReadHandle
vbRHPrealloc objstorageprovider.PreallocatedReadHandle
err error
closeHook func(i Iterator) error
stats *base.InternalIteratorStats
bufferPool *BufferPool
// boundsCmp and positionedUsingLatestBounds are for optimizing iteration
// that uses multiple adjacent bounds. The seek after setting a new bound
// can use the fact that the iterator is either within the previous bounds
// or exactly one key before or after the bounds. If the new bounds is
// after/before the previous bounds, and we are already positioned at a
// block that is relevant for the new bounds, we can try to first position
// using Next/Prev (repeatedly) instead of doing a more expensive seek.
//
// When there are wide files at higher levels that match the bounds
// but don't have any data for the bound, we will already be
// positioned at the key beyond the bounds and won't need to do much
// work -- given that most data is in L6, such files are likely to
// dominate the performance of the mergingIter, and may be the main
// benefit of this performance optimization (of course it also helps
// when the file that has the data has successive seeks that stay in
// the same block).
//
// Specifically, boundsCmp captures the relationship between the previous
// and current bounds, if the iterator had been positioned after setting
// the previous bounds. If it was not positioned, i.e., Seek/First/Last
// were not called, we don't know where it is positioned and cannot
// optimize.
//
// Example: Bounds moving forward, and iterator exhausted in forward direction.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) can use next (the optimization also requires that j
// is within the block, but that is not for correctness, but to limit the
// optimization to when it will actually be an optimization).
//
// Example: Bounds moving forward.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) can use next.
//
// Example: Bounds moving forward, but iterator not positioned using previous
// bounds.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [i, j). Iterator is at j since it was never positioned using
// [f, h). So positionedUsingLatestBounds=false, and boundsCmp is set to 0.
// SeekGE(i) will not use next.
//
// Example: Bounds moving forward and sparse file
// bounds = [f, h), ^ shows block iterator position
// file contents [ a z ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) notices that the iterator is already past j and does
// not need to do anything.
//
// Similar examples can be constructed for backward iteration.
//
// This notion of exactly one key before or after the bounds is not quite
// true when block properties are used to ignore blocks. In that case we
// can't stop precisely at the first block that is past the bounds since
// we are using the index entries to enforce the bounds.
//
// e.g. 3 blocks with keys [b, c] [f, g], [i, j, k] with index entries d,
// h, l. And let the lower bound be k, and we are reverse iterating. If
// the block [i, j, k] is ignored due to the block interval annotations we
// do need to move the index to block [f, g] since the index entry for the
// [i, j, k] block is l which is not less than the lower bound of k. So we
// have passed the entries i, j.
//
// This behavior is harmless since the block property filters are fixed
// for the lifetime of the iterator so i, j are irrelevant. In addition,
// the current code will not load the [f, g] block, so the seek
// optimization that attempts to use Next/Prev do not apply anyway.
boundsCmp int
positionedUsingLatestBounds bool
// exhaustedBounds represents whether the iterator is exhausted for
// iteration by reaching the upper or lower bound. +1 when exhausted
// the upper bound, -1 when exhausted the lower bound, and 0 when
// neither. exhaustedBounds is also used for the TrySeekUsingNext
// optimization in twoLevelIterator and singleLevelIterator. Care should be
// taken in setting this in twoLevelIterator before calling into
// singleLevelIterator, given that these two iterators share this field.
exhaustedBounds int8
// maybeFilteredKeysSingleLevel indicates whether the last iterator
// positioning operation may have skipped any data blocks due to
// block-property filters when positioning the index.
maybeFilteredKeysSingleLevel bool
// useFilter specifies whether the filter block in this sstable, if present,
// should be used for prefix seeks or not. In some cases it is beneficial
// to skip a filter block even if it exists (eg. if probability of a match
// is high).
useFilter bool
lastBloomFilterMatched bool
hideObsoletePoints bool
}
// singleLevelIterator implements the base.InternalIterator interface.
var _ base.InternalIterator = (*singleLevelIterator)(nil)
var singleLevelIterPool = sync.Pool{
New: func() interface{} {
i := &singleLevelIterator{}
// Note: this is a no-op if invariants are disabled or race is enabled.
invariants.SetFinalizer(i, checkSingleLevelIterator)
return i
},
}
var twoLevelIterPool = sync.Pool{
New: func() interface{} {
i := &twoLevelIterator{}
// Note: this is a no-op if invariants are disabled or race is enabled.
invariants.SetFinalizer(i, checkTwoLevelIterator)
return i
},
}
// TODO(jackson): rangedel fragmentBlockIters can't be pooled because of some
// code paths that double Close the iters. Fix the double close and pool the
// *fragmentBlockIter type directly.
var rangeKeyFragmentBlockIterPool = sync.Pool{
New: func() interface{} {
i := &rangeKeyFragmentBlockIter{}
// Note: this is a no-op if invariants are disabled or race is enabled.
invariants.SetFinalizer(i, checkRangeKeyFragmentBlockIterator)
return i
},
}
func checkSingleLevelIterator(obj interface{}) {
i := obj.(*singleLevelIterator)
if p := i.data.handle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "singleLevelIterator.data.handle is not nil: %p\n", p)
os.Exit(1)
}
if p := i.index.handle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "singleLevelIterator.index.handle is not nil: %p\n", p)
os.Exit(1)
}
}
func checkTwoLevelIterator(obj interface{}) {
i := obj.(*twoLevelIterator)
if p := i.data.handle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "singleLevelIterator.data.handle is not nil: %p\n", p)
os.Exit(1)
}
if p := i.index.handle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "singleLevelIterator.index.handle is not nil: %p\n", p)
os.Exit(1)
}
}
func checkRangeKeyFragmentBlockIterator(obj interface{}) {
i := obj.(*rangeKeyFragmentBlockIter)
if p := i.blockIter.handle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "fragmentBlockIter.blockIter.handle is not nil: %p\n", p)
os.Exit(1)
}
}
// init initializes a singleLevelIterator for reading from the table. It is
// synonmous with Reader.NewIter, but allows for reusing of the iterator
// between different Readers.
//
// Note that lower, upper passed into init has nothing to do with virtual sstable
// bounds. If the virtualState passed in is not nil, then virtual sstable bounds
// will be enforced.
func (i *singleLevelIterator) init(
ctx context.Context,
r *Reader,
v *virtualState,
lower, upper []byte,
filterer *BlockPropertiesFilterer,
useFilter, hideObsoletePoints bool,
stats *base.InternalIteratorStats,
rp ReaderProvider,
bufferPool *BufferPool,
) error {
if r.err != nil {
return r.err
}
indexH, err := r.readIndex(ctx, stats)
if err != nil {
return err
}
if v != nil {
i.vState = v
i.endKeyInclusive, lower, upper = v.constrainBounds(lower, upper, false /* endInclusive */)
}
i.ctx = ctx
i.lower = lower
i.upper = upper
i.bpfs = filterer
i.useFilter = useFilter
i.reader = r
i.cmp = r.Compare
i.stats = stats
i.hideObsoletePoints = hideObsoletePoints
i.bufferPool = bufferPool
err = i.index.initHandle(i.cmp, indexH, r.Properties.GlobalSeqNum, false)
if err != nil {
// blockIter.Close releases indexH and always returns a nil error
_ = i.index.Close()
return err
}
i.dataRH = objstorageprovider.UsePreallocatedReadHandle(ctx, r.readable, &i.dataRHPrealloc)
if r.tableFormat >= TableFormatPebblev3 {
if r.Properties.NumValueBlocks > 0 {
// NB: we cannot avoid this ~248 byte allocation, since valueBlockReader
// can outlive the singleLevelIterator due to be being embedded in a
// LazyValue. This consumes ~2% in microbenchmark CPU profiles, but we
// should only optimize this if it shows up as significant in end-to-end
// CockroachDB benchmarks, since it is tricky to do so. One possibility
// is that if many sstable iterators only get positioned at latest
// versions of keys, and therefore never expose a LazyValue that is
// separated to their callers, they can put this valueBlockReader into a
// sync.Pool.
i.vbReader = &valueBlockReader{
ctx: ctx,
bpOpen: i,
rp: rp,
vbih: r.valueBIH,
stats: stats,
}
i.data.lazyValueHandling.vbr = i.vbReader
i.vbRH = objstorageprovider.UsePreallocatedReadHandle(ctx, r.readable, &i.vbRHPrealloc)
}
i.data.lazyValueHandling.hasValuePrefix = true
}
return nil
}
// Helper function to check if keys returned from iterator are within global and virtual bounds.
func (i *singleLevelIterator) maybeVerifyKey(
iKey *InternalKey, val base.LazyValue,
) (*InternalKey, base.LazyValue) {
// maybeVerify key is only used for virtual sstable iterators.
if invariants.Enabled && i.vState != nil && iKey != nil {
key := iKey.UserKey
uc, vuc := i.cmp(key, i.upper), i.cmp(key, i.vState.upper.UserKey)
lc, vlc := i.cmp(key, i.lower), i.cmp(key, i.vState.lower.UserKey)
if (i.vState.upper.IsExclusiveSentinel() && vuc == 0) || (!i.endKeyInclusive && uc == 0) || uc > 0 || vuc > 0 || lc < 0 || vlc < 0 {
panic(fmt.Sprintf("key: %s out of bounds of singleLevelIterator", key))
}
}
return iKey, val
}
// setupForCompaction sets up the singleLevelIterator for use with compactionIter.
// Currently, it skips readahead ramp-up. It should be called after init is called.
func (i *singleLevelIterator) setupForCompaction() {
i.dataRH.SetupForCompaction()
if i.vbRH != nil {
i.vbRH.SetupForCompaction()
}
}
func (i *singleLevelIterator) resetForReuse() singleLevelIterator {
return singleLevelIterator{
index: i.index.resetForReuse(),
data: i.data.resetForReuse(),
}
}
func (i *singleLevelIterator) initBounds() {
// Trim the iteration bounds for the current block. We don't have to check
// the bounds on each iteration if the block is entirely contained within the
// iteration bounds.
i.blockLower = i.lower
if i.blockLower != nil {
key, _ := i.data.First()
if key != nil && i.cmp(i.blockLower, key.UserKey) < 0 {
// The lower-bound is less than the first key in the block. No need
// to check the lower-bound again for this block.
i.blockLower = nil
}
}
i.blockUpper = i.upper
if i.blockUpper != nil && i.cmp(i.blockUpper, i.index.Key().UserKey) > 0 {
// The upper-bound is greater than the index key which itself is greater
// than or equal to every key in the block. No need to check the
// upper-bound again for this block. Even if blockUpper is inclusive
// because of upper being inclusive, we can still safely set blockUpper
// to nil here.
//
// TODO(bananabrick): We could also set blockUpper to nil for the >=
// case, if blockUpper is inclusive.
i.blockUpper = nil
}
}
type loadBlockResult int8
const (
loadBlockOK loadBlockResult = iota
// Could be due to error or because no block left to load.
loadBlockFailed
loadBlockIrrelevant
)
// loadBlock loads the block at the current index position and leaves i.data
// unpositioned. If unsuccessful, it sets i.err to any error encountered, which
// may be nil if we have simply exhausted the entire table.
func (i *singleLevelIterator) loadBlock(dir int8) loadBlockResult {
if !i.index.valid() {
// Ensure the data block iterator is invalidated even if loading of the block
// fails.
i.data.invalidate()
return loadBlockFailed
}
// Load the next block.
v := i.index.value()
bhp, err := decodeBlockHandleWithProperties(v.InPlaceValue())
if i.dataBH == bhp.BlockHandle && i.data.valid() {
// We're already at the data block we want to load. Reset bounds in case
// they changed since the last seek, but don't reload the block from cache
// or disk.
//
// It's safe to leave i.data in its original state here, as all callers to
// loadBlock make an absolute positioning call (i.e. a seek, first, or last)
// to `i.data` right after loadBlock returns loadBlockOK.
i.initBounds()
return loadBlockOK
}
// Ensure the data block iterator is invalidated even if loading of the block
// fails.
i.data.invalidate()
i.dataBH = bhp.BlockHandle
if err != nil {
i.err = errCorruptIndexEntry
return loadBlockFailed
}
if i.bpfs != nil {
intersects, err := i.bpfs.intersects(bhp.Props)
if err != nil {
i.err = errCorruptIndexEntry
return loadBlockFailed
}
if intersects == blockMaybeExcluded {
intersects = i.resolveMaybeExcluded(dir)
}
if intersects == blockExcluded {
i.maybeFilteredKeysSingleLevel = true
return loadBlockIrrelevant
}
// blockIntersects
}
ctx := objiotracing.WithBlockType(i.ctx, objiotracing.DataBlock)
block, err := i.reader.readBlock(ctx, i.dataBH, nil /* transform */, i.dataRH, i.stats, i.bufferPool)
if err != nil {
i.err = err
return loadBlockFailed
}
i.err = i.data.initHandle(i.cmp, block, i.reader.Properties.GlobalSeqNum, i.hideObsoletePoints)
if i.err != nil {
// The block is partially loaded, and we don't want it to appear valid.
i.data.invalidate()
return loadBlockFailed
}
i.initBounds()
return loadBlockOK
}
// readBlockForVBR implements the blockProviderWhenOpen interface for use by
// the valueBlockReader.
func (i *singleLevelIterator) readBlockForVBR(
ctx context.Context, h BlockHandle, stats *base.InternalIteratorStats,
) (bufferHandle, error) {
ctx = objiotracing.WithBlockType(ctx, objiotracing.ValueBlock)
return i.reader.readBlock(ctx, h, nil, i.vbRH, stats, i.bufferPool)
}
// resolveMaybeExcluded is invoked when the block-property filterer has found
// that a block is excluded according to its properties but only if its bounds
// fall within the filter's current bounds. This function consults the
// apprioriate bound, depending on the iteration direction, and returns either
// `blockIntersects` or `blockMaybeExcluded`.
func (i *singleLevelIterator) resolveMaybeExcluded(dir int8) intersectsResult {
// TODO(jackson): We could first try comparing to top-level index block's
// key, and if within bounds avoid per-data block key comparisons.
// This iterator is configured with a bound-limited block property
// filter. The bpf determined this block could be excluded from
// iteration based on the property encoded in the block handle.
// However, we still need to determine if the block is wholly
// contained within the filter's key bounds.
//
// External guarantees ensure all the block's keys are ≥ the
// filter's lower bound during forward iteration, and that all the
// block's keys are < the filter's upper bound during backward
// iteration. We only need to determine if the opposite bound is
// also met.
//
// The index separator in index.Key() provides an inclusive
// upper-bound for the data block's keys, guaranteeing that all its
// keys are ≤ index.Key(). For forward iteration, this is all we
// need.
if dir > 0 {
// Forward iteration.
if i.bpfs.boundLimitedFilter.KeyIsWithinUpperBound(i.index.Key()) {
return blockExcluded
}
return blockIntersects
}
// Reverse iteration.
//
// Because we're iterating in the reverse direction, we don't yet have
// enough context available to determine if the block is wholly contained
// within its bounds. This case arises only during backward iteration,
// because of the way the index is structured.
//
// Consider a bound-limited bpf limited to the bounds [b,d), loading the
// block with separator `c`. During reverse iteration, the guarantee that
// all the block's keys are < `d` is externally provided, but no guarantee
// is made on the bpf's lower bound. The separator `c` only provides an
// inclusive upper bound on the block's keys, indicating that the
// corresponding block handle points to a block containing only keys ≤ `c`.
//
// To establish a lower bound, we step the index backwards to read the
// previous block's separator, which provides an inclusive lower bound on
// the original block's keys. Afterwards, we step forward to restore our
// index position.
if peekKey, _ := i.index.Prev(); peekKey == nil {
// The original block points to the first block of this index block. If
// there's a two-level index, it could potentially provide a lower
// bound, but the code refactoring necessary to read it doesn't seem
// worth the payoff. We fall through to loading the block.
} else if i.bpfs.boundLimitedFilter.KeyIsWithinLowerBound(peekKey) {
// The lower-bound on the original block falls within the filter's
// bounds, and we can skip the block (after restoring our current index
// position).
_, _ = i.index.Next()
return blockExcluded
}
_, _ = i.index.Next()
return blockIntersects
}
func (i *singleLevelIterator) initBoundsForAlreadyLoadedBlock() {
if i.data.getFirstUserKey() == nil {
panic("initBoundsForAlreadyLoadedBlock must not be called on empty or corrupted block")
}
i.blockLower = i.lower
if i.blockLower != nil {
firstUserKey := i.data.getFirstUserKey()
if firstUserKey != nil && i.cmp(i.blockLower, firstUserKey) < 0 {
// The lower-bound is less than the first key in the block. No need
// to check the lower-bound again for this block.
i.blockLower = nil
}
}
i.blockUpper = i.upper
if i.blockUpper != nil && i.cmp(i.blockUpper, i.index.Key().UserKey) > 0 {
// The upper-bound is greater than the index key which itself is greater
// than or equal to every key in the block. No need to check the
// upper-bound again for this block.
i.blockUpper = nil
}
}
// The number of times to call Next/Prev in a block before giving up and seeking.
// The value of 4 is arbitrary.
// TODO(sumeer): experiment with dynamic adjustment based on the history of
// seeks for a particular iterator.
const numStepsBeforeSeek = 4
func (i *singleLevelIterator) trySeekGEUsingNextWithinBlock(
key []byte,
) (k *InternalKey, v base.LazyValue, done bool) {
k, v = i.data.Key(), i.data.value()
for j := 0; j < numStepsBeforeSeek; j++ {
curKeyCmp := i.cmp(k.UserKey, key)
if curKeyCmp >= 0 {
if i.blockUpper != nil {
cmp := i.cmp(k.UserKey, i.blockUpper)
if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
i.exhaustedBounds = +1
return nil, base.LazyValue{}, true
}
}
return k, v, true
}
k, v = i.data.Next()
if k == nil {
break
}
}
return k, v, false
}
func (i *singleLevelIterator) trySeekLTUsingPrevWithinBlock(
key []byte,
) (k *InternalKey, v base.LazyValue, done bool) {
k, v = i.data.Key(), i.data.value()
for j := 0; j < numStepsBeforeSeek; j++ {
curKeyCmp := i.cmp(k.UserKey, key)
if curKeyCmp < 0 {
if i.blockLower != nil && i.cmp(k.UserKey, i.blockLower) < 0 {
i.exhaustedBounds = -1
return nil, base.LazyValue{}, true
}
return k, v, true
}
k, v = i.data.Prev()
if k == nil {
break
}
}
return k, v, false
}
func (i *singleLevelIterator) recordOffset() uint64 {
offset := i.dataBH.Offset
if i.data.valid() {
// - i.dataBH.Length/len(i.data.data) is the compression ratio. If
// uncompressed, this is 1.
// - i.data.nextOffset is the uncompressed position of the current record
// in the block.
// - i.dataBH.Offset is the offset of the block in the sstable before
// decompression.
offset += (uint64(i.data.nextOffset) * i.dataBH.Length) / uint64(len(i.data.data))
} else {
// Last entry in the block must increment bytes iterated by the size of the block trailer
// and restart points.
offset += i.dataBH.Length + blockTrailerLen
}
return offset
}
// SeekGE implements internalIterator.SeekGE, as documented in the pebble
// package. Note that SeekGE only checks the upper bound. It is up to the
// caller to ensure that key is greater than or equal to the lower bound.
func (i *singleLevelIterator) SeekGE(
key []byte, flags base.SeekGEFlags,
) (*InternalKey, base.LazyValue) {
if i.vState != nil {
// Callers of SeekGE don't know about virtual sstable bounds, so we may
// have to internally restrict the bounds.
//
// TODO(bananabrick): We can optimize this check away for the level iter
// if necessary.
if i.cmp(key, i.lower) < 0 {
key = i.lower
}
}
if flags.TrySeekUsingNext() {
// The i.exhaustedBounds comparison indicates that the upper bound was
// reached. The i.data.isDataInvalidated() indicates that the sstable was
// exhausted.
if (i.exhaustedBounds == +1 || i.data.isDataInvalidated()) && i.err == nil {
// Already exhausted, so return nil.
return nil, base.LazyValue{}
}
if i.err != nil {
// The current iterator position cannot be used.
flags = flags.DisableTrySeekUsingNext()
}
// INVARIANT: flags.TrySeekUsingNext() => i.err == nil &&
// !i.exhaustedBounds==+1 && !i.data.isDataInvalidated(). That is,
// data-exhausted and bounds-exhausted, as defined earlier, are both
// false. Ths makes it safe to clear out i.exhaustedBounds and i.err
// before calling into seekGEHelper.
}
i.exhaustedBounds = 0
i.err = nil // clear cached iteration error
boundsCmp := i.boundsCmp
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
i.positionedUsingLatestBounds = true
return i.seekGEHelper(key, boundsCmp, flags)
}
// seekGEHelper contains the common functionality for SeekGE and SeekPrefixGE.
func (i *singleLevelIterator) seekGEHelper(
key []byte, boundsCmp int, flags base.SeekGEFlags,
) (*InternalKey, base.LazyValue) {
// Invariant: trySeekUsingNext => !i.data.isDataInvalidated() && i.exhaustedBounds != +1
// SeekGE performs various step-instead-of-seeking optimizations: eg enabled
// by trySeekUsingNext, or by monotonically increasing bounds (i.boundsCmp).
// Care must be taken to ensure that when performing these optimizations and
// the iterator becomes exhausted, i.maybeFilteredKeys is set appropriately.
// Consider a previous SeekGE that filtered keys from k until the current
// iterator position.
//
// If the previous SeekGE exhausted the iterator, it's possible keys greater
// than or equal to the current search key were filtered. We must not reuse
// the current iterator position without remembering the previous value of
// maybeFilteredKeys.
var dontSeekWithinBlock bool
if !i.data.isDataInvalidated() && !i.index.isDataInvalidated() && i.data.valid() && i.index.valid() &&
boundsCmp > 0 && i.cmp(key, i.index.Key().UserKey) <= 0 {
// Fast-path: The bounds have moved forward and this SeekGE is
// respecting the lower bound (guaranteed by Iterator). We know that
// the iterator must already be positioned within or just outside the
// previous bounds. Therefore it cannot be positioned at a block (or
// the position within that block) that is ahead of the seek position.
// However it can be positioned at an earlier block. This fast-path to
// use Next() on the block is only applied when we are already at the
// block that the slow-path (the else-clause) would load -- this is
// the motivation for the i.cmp(key, i.index.Key().UserKey) <= 0
// predicate.
i.initBoundsForAlreadyLoadedBlock()
ikey, val, done := i.trySeekGEUsingNextWithinBlock(key)
if done {
return ikey, val
}
if ikey == nil {
// Done with this block.
dontSeekWithinBlock = true
}
} else {
// Cannot use bounds monotonicity. But may be able to optimize if
// caller claimed externally known invariant represented by
// flags.TrySeekUsingNext().
if flags.TrySeekUsingNext() {
// seekPrefixGE or SeekGE has already ensured
// !i.data.isDataInvalidated() && i.exhaustedBounds != +1
currKey := i.data.Key()
value := i.data.value()
less := i.cmp(currKey.UserKey, key) < 0
// We could be more sophisticated and confirm that the seek
// position is within the current block before applying this
// optimization. But there may be some benefit even if it is in
// the next block, since we can avoid seeking i.index.
for j := 0; less && j < numStepsBeforeSeek; j++ {
currKey, value = i.Next()
if currKey == nil {
return nil, base.LazyValue{}
}
less = i.cmp(currKey.UserKey, key) < 0
}
if !less {
if i.blockUpper != nil {
cmp := i.cmp(currKey.UserKey, i.blockUpper)
if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
i.exhaustedBounds = +1
return nil, base.LazyValue{}
}
}
return currKey, value
}
}
// Slow-path.
// Since we're re-seeking the iterator, the previous value of
// maybeFilteredKeysSingleLevel is irrelevant. If we filter out blocks
// during seeking, loadBlock will set it to true.
i.maybeFilteredKeysSingleLevel = false
var ikey *InternalKey
if ikey, _ = i.index.SeekGE(key, flags.DisableTrySeekUsingNext()); ikey == nil {
// The target key is greater than any key in the index block.
// Invalidate the block iterator so that a subsequent call to Prev()
// will return the last key in the table.
i.data.invalidate()
return nil, base.LazyValue{}
}
result := i.loadBlock(+1)
if result == loadBlockFailed {
return nil, base.LazyValue{}
}
if result == loadBlockIrrelevant {
// Enforce the upper bound here since don't want to bother moving
// to the next block if upper bound is already exceeded. Note that
// the next block starts with keys >= ikey.UserKey since even
// though this is the block separator, the same user key can span
// multiple blocks. If upper is exclusive we use >= below, else
// we use >.
if i.upper != nil {
cmp := i.cmp(ikey.UserKey, i.upper)
if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
i.exhaustedBounds = +1
return nil, base.LazyValue{}
}
}
// Want to skip to the next block.
dontSeekWithinBlock = true
}
}
if !dontSeekWithinBlock {
if ikey, val := i.data.SeekGE(key, flags.DisableTrySeekUsingNext()); ikey != nil {
if i.blockUpper != nil {
cmp := i.cmp(ikey.UserKey, i.blockUpper)
if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
i.exhaustedBounds = +1
return nil, base.LazyValue{}
}
}
return ikey, val
}
}
return i.skipForward()
}
// SeekPrefixGE implements internalIterator.SeekPrefixGE, as documented in the
// pebble package. Note that SeekPrefixGE only checks the upper bound. It is up
// to the caller to ensure that key is greater than or equal to the lower bound.
func (i *singleLevelIterator) SeekPrefixGE(
prefix, key []byte, flags base.SeekGEFlags,
) (*base.InternalKey, base.LazyValue) {
if i.vState != nil {
// Callers of SeekPrefixGE aren't aware of virtual sstable bounds, so
// we may have to internally restrict the bounds.
//
// TODO(bananabrick): We can optimize away this check for the level iter
// if necessary.
if i.cmp(key, i.lower) < 0 {
key = i.lower
}
}
return i.seekPrefixGE(prefix, key, flags, i.useFilter)
}
func (i *singleLevelIterator) seekPrefixGE(
prefix, key []byte, flags base.SeekGEFlags, checkFilter bool,
) (k *InternalKey, value base.LazyValue) {
// NOTE: prefix is only used for bloom filter checking and not later work in
// this method. Hence, we can use the existing iterator position if the last
// SeekPrefixGE did not fail bloom filter matching.
err := i.err
i.err = nil // clear cached iteration error
if checkFilter && i.reader.tableFilter != nil {
if !i.lastBloomFilterMatched {
// Iterator is not positioned based on last seek.
flags = flags.DisableTrySeekUsingNext()
}
i.lastBloomFilterMatched = false
// Check prefix bloom filter.
var dataH bufferHandle
dataH, i.err = i.reader.readFilter(i.ctx, i.stats)
if i.err != nil {
i.data.invalidate()
return nil, base.LazyValue{}
}
mayContain := i.reader.tableFilter.mayContain(dataH.Get(), prefix)
dataH.Release()
if !mayContain {
// This invalidation may not be necessary for correctness, and may
// be a place to optimize later by reusing the already loaded
// block. It was necessary in earlier versions of the code since
// the caller was allowed to call Next when SeekPrefixGE returned
// nil. This is no longer allowed.
i.data.invalidate()
return nil, base.LazyValue{}
}
i.lastBloomFilterMatched = true
}
if flags.TrySeekUsingNext() {
// The i.exhaustedBounds comparison indicates that the upper bound was
// reached. The i.data.isDataInvalidated() indicates that the sstable was
// exhausted.
if (i.exhaustedBounds == +1 || i.data.isDataInvalidated()) && err == nil {
// Already exhausted, so return nil.
return nil, base.LazyValue{}
}
if err != nil {