Skip to content

Latest commit

 

History

History

hashing

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SYCL Hashing Algorithms

This repository contains hashing algorithms implemented using SYCL which is a heterogeneous programming model based on standard C++.

The following hashing methods are currently available:

  • sha256
  • sha1 (unsecure)
  • md2 (unsecure)
  • md5 (unsecure)
  • keccak (128 224 256 288 384 512)
  • sha3 (224 256 384 512)
  • blake2b

Benchmarks

Some functions were ported from a CUDA implementation. The SYCL code was tested unchanged across the different implementations and hardware. Here's how they perform (the values are in GB/s):

Function Native CUDA SYCL on DPC++ CUDA (optimised) SYCL on ComputeCPP CPU (spir64/spirv64) SYCL on DPC++ CPU (spir64_x86_64) SYCL on hipSYCL (omp/cuda)
keccak 15.7 23.0 4.14 / 3.89 4.98 4.32 / 23.2
md5 14.6 20.3 6.26 / 5.89 9.93 9.27 / 20.2
blake2b 14.7 21.6 9.46 / 10.0 12.4 7.71 / 17.9
sha1 14.7 19.34 3.61 / 3.35 3.30 4.39 / 19.2
sha256 13.5 19.15 2.23 / 2.00 2.91 2.93 / 19.1
md2 4.18 4.23 0.22 / 0.25 0.176 0.25 / 2.33

Note

Something broke the spir64 backend of DPC++ and it produces now very slow code

Benchmark configuration:

  • block_size: 512 kiB
  • n_blocks: 4*1536
  • n_outbit: 128
  • GPU: GTX 1660 Ti
  • OS: rhel8.4
  • CPU: 2x E5-2670 v2

Remark

These are not the "best" settings as the optimum changes with the algorithm. The benchmarks measure the time to run 40 iterations, without copying the memory between the device and the host. In a real application, you could be memory bound.

How to build

git clone https://github.com/Michoumichmich/SYCL-Hashing-Algorithms.git ; cd SYCL-Hashing-Algorithms;
mkdir build; cd build
CXX=<sycl_compiler> cmake .. -DCMAKE_BUILD_TYPE=Release
make

This will build the library, and a demo executable. Running it will perform a benchmark on your CPU and CUDA device (if available).

You do not necessarily need to pass the <sycl_compiler> to cmake, it depends on the implementation you're using and its toolchain.

How to use

Let's assume you used this script to setup the toolchain with CUDA support.

Here's a minimal example:

#include <sycl/sycl.hpp> // SYCL headers
#include "sycl_hash.hpp" // The headers
#include "tools/sycl_queue_helpers.hpp" // To make sycl queue
using namespace hash;

int main(){
    auto cuda_q = try_get_queue(cuda_selector{}); // create a queue on a cuda device and attach an exception handler

    constexpr int hash_size = get_block_size<method::sha256>();
    constexpr int n_blocks = 20; // amount of hash to do in parallel
    constexpr int item_size = 1024;

    byte input[n_blocks * item_size]; // get an array of 20 same-sized data items to hash;
    byte output[n_blocks * hash_size]; // reserve space for the output

    compute<method::sha256>(cuda_q, input, item_size, output, n_blocks); // do the computing
    compute_sha256(cuda_q, input, item_size, output, n_blocks); // identical

    /**
     * For SHA3 one could write:
     * compute_sha3<512>(cuda_q, input, item_size, output, n_blocks);
     */

    return 0;
}

And, for clang build with

-fsycl -fsycl-targets=spir64_x86_64,nvptx64-nvidia-cuda--sm_50 -I<include_dir> <build_dir>/libsycl_hash.a

And your hash will run on the GPU.

Sources

You may find here the fork of the original CUDA implementations with the benchmarks added.

Tested implementations

  • Intel's clang with OpenCL on CPU (using Intel's driver) and Codeplay's CUDA backend
  • hipSYCL on macOS with the OpenMP backend (set hipSYCL_DIR then cmake .. -DHIPSYCL_TARGETS="...")
  • ComputeCPP you can build with cmake .. -DComputeCpp_DIR=/path_to_computecpp -DCOMPUTECPP_BITCODE=spir64 -DCMAKE_BUILD_TYPE=Release, Tested on the host device, spir64 and spirv64. See ComputeCpp SDK

Acknowledgements

This repository contains code written by Matt Zweil & The Mochimo Core Contributor Team. Please see the files for their respective licences.