-
Notifications
You must be signed in to change notification settings - Fork 22
/
eval.py
executable file
·199 lines (156 loc) · 9.42 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torchvision.utils as vutils
import torch.nn.functional as F
import os
import sys
import datetime
import gc
from pathlib import Path
import numpy as np
import cv2
import math
from sklearn.metrics import mean_absolute_error
from skimage.metrics import structural_similarity
import collections
from utils import *
from data_loader.utils import refine_image, read_frame, load_file_list, norm
from ckpt_manager import CKPT_Manager
from models import create_model
def mae(img1, img2):
mae_0=mean_absolute_error(img1[:,:,0], img2[:,:,0],
multioutput='uniform_average')
mae_1=mean_absolute_error(img1[:,:,1], img2[:,:,1],
multioutput='uniform_average')
mae_2=mean_absolute_error(img1[:,:,2], img2[:,:,2],
multioutput='uniform_average')
return np.mean([mae_0,mae_1,mae_2])
def ssim(img1, img2, PIXEL_MAX = 1.0):
return structural_similarity(img1, img2, data_range=PIXEL_MAX, multichannel=True)
def psnr(img1, img2, PIXEL_MAX = 1.0):
mse_ = np.mean( (img1 - img2) ** 2 )
return 10 * math.log10(PIXEL_MAX / mse_)
def init(config, mode = 'deblur'):
date = datetime.datetime.now().strftime('%Y_%m_%d_%H%M')
model = create_model(config)
network = model.get_network().eval()
ckpt_manager = CKPT_Manager(config.LOG_DIR.ckpt, config.mode, config.max_ckpt_num)
load_state, ckpt_name = ckpt_manager.load_ckpt(network, by_score = config.EVAL.load_ckpt_by_score, name = config.EVAL.ckpt_name, abs_name = config.EVAL.ckpt_abs_name, epoch = config.EVAL.ckpt_epoch)
print('\nLoading checkpoint \'{}\' on model \'{}\': {}'.format(ckpt_name, config.mode, load_state))
save_path_root = config.EVAL.LOG_DIR.save
save_path_root_deblur = os.path.join(save_path_root, mode, ckpt_name.split('.')[0])
save_path_root_deblur_score = save_path_root_deblur
Path(save_path_root_deblur).mkdir(parents=True, exist_ok=True)
torch.save(network.state_dict(), os.path.join(save_path_root_deblur, ckpt_name))
save_path_root_deblur = os.path.join(save_path_root_deblur, config.EVAL.data, date)
blur_folder_path_list, blur_file_path_list, _ = load_file_list(config.EVAL.data_path, config.EVAL.input_path)
gt_file_path_list = None
if config.EVAL.gt_path is not None:
_, gt_file_path_list, _ = load_file_list(config.EVAL.data_path, config.EVAL.gt_path)
return network, save_path_root_deblur, save_path_root_deblur_score, ckpt_name, blur_folder_path_list, blur_file_path_list, gt_file_path_list
def eval_quan_qual(config):
mode = 'quanti_quali'
network, save_path_root_deblur, save_path_root_deblur_score, ckpt_name,\
blur_folder_path_list, blur_file_path_list, gt_file_path_list = init(config, mode)
##
total_norm = 0
total_itr_time = 0
PSNR_mean_total = 0.
SSIM_mean_total = 0.
for i in range(len(blur_file_path_list)):
## read frame
frame_list = []
video_name = blur_folder_path_list[i].split(os.sep)[-2]
print('[Reading Frames: {}][{}/{}]'.format(video_name, i + 1, len(blur_file_path_list)))
for frame_name in blur_file_path_list[i]:
frame = refine_image(read_frame(frame_name), config.refine_val)
frame = np.expand_dims(frame.transpose(0, 3, 1, 2), 0)
frame_list.append(frame)
if gt_file_path_list is not None:
frame_list_gt = []
for frame_name in gt_file_path_list[i]:
frame = refine_image(read_frame(frame_name), config.refine_val)
frame = np.expand_dims(frame.transpose(0, 3, 1, 2), 0)
frame_list_gt.append(frame)
## evaluation start
PSNR_mean = 0.
SSIM_mean = 0.
total_itr_time_video = 0
for j in range(len(frame_list)):
total_norm = total_norm + 1
## prepare input tensors
index = np.array(list(range(j - 1, j + 2))).clip(min=0, max=len(frame_list)-1)
Is = torch.cat([torch.FloatTensor(frame_list[k]).cuda() for k in index], dim = 1)
I_center = torch.FloatTensor(frame_list[j][0]).cuda()
#######################################################################
## run network
with torch.no_grad():
if j == 0:
I_prev_deblurred = Is[:, 0, :, :, :]
I_prev = Is[:, 0, :, :, :]
I_curr = Is[:, 1, :, :, :]
I_next = Is[:, 2, :, :, :]
torch.cuda.synchronize()
init_time = time.time()
out = network(I_prev, I_curr, I_next, I_prev_deblurred)
I_prev_deblurred = out['result']
torch.cuda.synchronize()
itr_time = time.time() - init_time
total_itr_time_video = total_itr_time_video + itr_time
total_itr_time = total_itr_time + itr_time
#######################################################################
## evaluation
inp = norm(I_center)
output = norm(out['result'])
PSNR = 0
SSIM = 0
if gt_file_path_list is not None:
gt = norm(torch.FloatTensor(frame_list_gt[j][0]).cuda())
# quantitative
output_cpu = output.cpu().numpy()[0].transpose(1, 2, 0)
gt_cpu = gt.cpu().numpy()[0].transpose(1, 2, 0)
PSNR = psnr(output_cpu, gt_cpu)
SSIM = ssim(output_cpu, gt_cpu)
PSNR_mean += PSNR
SSIM_mean += SSIM
frame_name = os.path.basename(blur_file_path_list[i][j])
print('[EVAL {}|{}|{}][{}/{}][{}/{}] {} PSNR: {:.5f}, SSIM: {:.5f} ({:.5f}sec)'.format(config.mode, config.EVAL.data, video_name, i + 1, len(blur_file_path_list), j + 1, len(frame_list), frame_name, PSNR, SSIM, itr_time))
with open(os.path.join(save_path_root_deblur_score, 'score_{}.txt'.format(config.EVAL.data)), 'w' if (i == 0 and j == 0) else 'a') as file:
file.write('[EVAL {}|{}|{}][{}/{}][{}/{}] {} PSNR: {:.5f}, SSIM: {:.5f} ({:.5f}sec)\n'.format(config.mode, config.EVAL.data, video_name, i + 1, len(blur_file_path_list), j + 1, len(frame_list), frame_name, PSNR, SSIM, itr_time))
file.close()
# qualitative
for iformat in ['png', 'jpg']:
frame_name_no_ext = frame_name.split('.')[0]
save_path_deblur = os.path.join(save_path_root_deblur, iformat)
Path(save_path_deblur).mkdir(parents=True, exist_ok=True)
Path(os.path.join(save_path_deblur, 'input', video_name)).mkdir(parents=True, exist_ok=True)
save_file_path_deblur_input = os.path.join(save_path_deblur, 'input', video_name, '{}.{}'.format(frame_name_no_ext, iformat))
vutils.save_image(inp, '{}'.format(save_file_path_deblur_input), nrow=1, padding = 0, normalize = False)
Path(os.path.join(save_path_deblur, 'output', video_name)).mkdir(parents=True, exist_ok=True)
save_file_path_deblur_output = os.path.join(save_path_deblur, 'output', video_name, '{}.{}'.format(frame_name_no_ext, iformat))
vutils.save_image(output, '{}'.format(save_file_path_deblur_output), nrow=1, padding = 0, normalize = False)
if gt_file_path_list is not None:
Path(os.path.join(save_path_deblur, 'gt', video_name)).mkdir(parents=True, exist_ok=True)
save_file_path_deblur_gt = os.path.join(save_path_deblur, 'gt', video_name, '{}.{}'.format(frame_name_no_ext, iformat))
vutils.save_image(gt, '{}'.format(save_file_path_deblur_gt), nrow=1, padding = 0, normalize = False)
# video average
PSNR_mean_total += PSNR_mean
PSNR_mean = PSNR_mean / len(frame_list)
SSIM_mean_total += SSIM_mean
SSIM_mean = SSIM_mean / len(frame_list)
print('[MEAN EVAL {}|{}|{}][{}/{}] {} PSNR: {:.5f}, SSIM: {:.5f} ({:.5f}sec)\n\n'.format(config.mode, config.EVAL.data, video_name, i + 1, len(blur_file_path_list), frame_name, PSNR_mean, SSIM_mean, total_itr_time_video / len(frame_list)))
with open(os.path.join(save_path_root_deblur_score, 'score_{}.txt'.format(config.EVAL.data)), 'a') as file:
file.write('[MEAN EVAL {}|{}|{}][{}/{}] {} PSNR: {:.5f}, SSIM: {:.5f} ({:.5f}sec)\n\n'.format(config.mode, config.EVAL.data, video_name, i + 1, len(blur_file_path_list), frame_name, PSNR_mean, SSIM_mean, total_itr_time_video / len(frame_list)))
file.close()
gc.collect()
# total average
total_itr_time = total_itr_time / total_norm
PSNR_mean_total = PSNR_mean_total / total_norm
SSIM_mean_total = SSIM_mean_total / total_norm
sys.stdout.write('\n[TOTAL {}|{}] PSNR: {:.5f} SSIM: {:.5f} ({:.5f}sec)'.format(ckpt_name, config.EVAL.data, PSNR_mean_total, SSIM_mean_total, total_itr_time))
with open(os.path.join(save_path_root_deblur_score, 'score_{}.txt'.format(config.EVAL.data)), 'a') as file:
file.write('\n[TOTAL {}|{}] PSNR: {:.5f} SSIM: {:.5f} ({:.5f}sec)\n'.format(ckpt_name, config.EVAL.data, PSNR_mean_total, SSIM_mean_total, total_itr_time))
file.close()
def eval(config):
# if config.EVAL.eval_mode == 'quan':
# eval_quan(config)
eval_quan_qual(config)