-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_student.py
456 lines (376 loc) · 18.3 KB
/
train_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""
the general training framework
"""
from __future__ import print_function
from models.resnet import resnet20
import os
os.environ['KMP_WARNINGS'] = 'off'
import argparse
import socket
import time
import tensorboard_logger as tb_logger
import torch
import torch.optim as optim
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.models as models
from models import model_dict
from models.util import Embed, ConvReg, LinearEmbed
from models.util import Connector, Translator, Paraphraser
from dataset.cifar100 import get_cifar100_dataloaders, get_cifar100_dataloaders_sample, get_cifar100_imbalanced
from dataset.imagenet import get_imagenet_dataloader
from helper.util import adjust_learning_rate
from distiller_zoo import DistillKL, HintLoss, Attention, Similarity, Correlation, VIDLoss, RKDLoss
from distiller_zoo import PKT, ABLoss, FactorTransfer, KDSVD, FSP, NSTLoss, AllHint
from crd.criterion import CRDLoss
from helper.loops import train_distill as train, validate
from helper.pretrain import init
####################################
import torch.nn.utils.prune as prune
from src.prune_scheduler import AgpPruningRate
from itertools import chain
import numpy as np
from src.wrappers import Student, Teacher
def parse_option():
hostname = socket.gethostname()
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--gpu', type=str, default='0', choices=['0', '1', '2', '3'], help='gpu to train on')
parser.add_argument('--print_freq', type=int, default=100, help='print frequency')
parser.add_argument('--tb_freq', type=int, default=500, help='tb frequency')
parser.add_argument('--save_freq', type=int, default=40, help='save frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=240, help='number of training epochs')
parser.add_argument('--init_epochs', type=int, default=30, help='init training for two-stage methods')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.01, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='150,180,210', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# dataset
parser.add_argument('--dataset', type=str, default='cifar100', choices=['cifar100', 'imagenet'], help='dataset')
# model
parser.add_argument('--model_s', type=str, default='resnet8',
choices=['resnet8', 'resnet14', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110',
'resnet8x4', 'resnet32x4', 'wrn_16_1', 'wrn_16_2', 'wrn_40_1', 'wrn_40_2',
'vgg8', 'vgg11', 'vgg13', 'vgg16', 'vgg19', 'ResNet50',
'MobileNetV2', 'ShuffleV1', 'ShuffleV2'])
parser.add_argument('--path_t', type=str, default=None, help='teacher model snapshot')
# distillation
parser.add_argument('--distill', type=str, default='kd', choices=['kd', 'hint', 'attention', 'similarity',
'correlation', 'vid', 'crd', 'kdsvd', 'fsp',
'rkd', 'pkt', 'abound', 'factor', 'nst', 'all'])
parser.add_argument('--trial', type=str, default='1', help='trial id')
parser.add_argument('-r', '--gamma', type=float, default=1, help='weight for classification')
parser.add_argument('-a', '--alpha', type=float, default=None, help='weight balance for KD')
parser.add_argument('-b', '--beta', type=float, default=None, help='weight balance for other losses')
# KL distillation
parser.add_argument('--kd_T', type=float, default=4, help='temperature for KD distillation')
# NCE distillation
parser.add_argument('--feat_dim', default=128, type=int, help='feature dimension')
parser.add_argument('--mode', default='exact', type=str, choices=['exact', 'relax'])
parser.add_argument('--nce_k', default=16384, type=int, help='number of negative samples for NCE')
parser.add_argument('--nce_t', default=0.07, type=float, help='temperature parameter for softmax')
parser.add_argument('--nce_m', default=0.5, type=float, help='momentum for non-parametric updates')
# hint layer
parser.add_argument('--hint_layer', default=2, type=int, choices=[0, 1, 2, 3, 4])
parser.add_argument("--target_sparsity", default=0.45, type=float, choices=[0.30, 0.45, 0.60, 0.75, 0.90])
parser.add_argument("--strat", default="struct", type=str, choices=["struct", "finegrain"])
parser.add_argument("--bias", default=False, type=bool, choices=[True, False])
opt = parser.parse_args()
# set training gpu
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
# set different learning rate from these 4 models
if opt.model_s in ['MobileNetV2', 'ShuffleV1', 'ShuffleV2']:
opt.learning_rate = 0.01
# set the path according to the environment
if hostname.startswith('visiongpu'):
opt.model_path = '/path/to/my/student_model'
opt.tb_path = '/path/to/my/student_tensorboards'
else:
opt.model_path = './save/student_model'
opt.tb_path = './save/student_tensorboards'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
if 'pretrained_torch' not in opt.path_t:
opt.model_t = get_teacher_name(opt.path_t)
else:
opt.model_t = opt.path_t.split('/')[1]
opt.model_name = 'S:{}_T:{}_{}_{}_r:{}_a:{}_b:{}_{}_ts:{}_strat:{}_lr:{}_epochs:{}'.format(opt.model_t, opt.model_t, opt.dataset, opt.distill,
opt.gamma, opt.alpha, opt.beta, opt.trial, opt.target_sparsity, opt.strat, opt.learning_rate, opt.epochs)
if opt.bias:
opt.model_name += ":bias"
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
return opt
def get_teacher_name(model_path):
"""parse teacher name"""
segments = model_path.split('/')[-2].split('_')
if segments[0] != 'wrn':
return segments[0]
else:
return segments[0] + '_' + segments[1] + '_' + segments[2]
def get_pretrained_torch_model(model_name, num_classes):
if model_name == 'resnet34':
model = models.resnet34(pretrained=True)
else:
raise NotImplementedError(model_name + ' not implemented')
return model
def load_teacher(model_path, n_cls):
print('==> loading teacher model')
if 'pretrained_torch' in model_path:
model_t = model_path.split('/')[-1]
model = get_pretrained_torch_model(model_t, n_cls)
model = Teacher(model)
return model
else:
model_t = get_teacher_name(model_path)
model = model_dict[model_t](num_classes=n_cls)
model.load_state_dict(torch.load(model_path)['model'])
print('==> done')
return model
def main():
best_acc = 0
opt = parse_option()
# tensorboard logger
logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
seed = 0
indices = [
(83, 'shrew', 0.1), (17, 'can', 0.2), (86, 'oak_tree', 0.2), (87, 'palm_tree', 0.2),
(76, 'dinosaur', 0.5), (20, 'apple', 0.1), (75, 'crocodile', 0.1), (22, 'orange', 0.5),
(58, 'elephant', 0.5), (94, 'train', 0.2), (63, 'raccoon', 0.5), (85, 'maple_tree', 0.1),
(90, 'bicycle', 0.1), (37, 'butterfly', 0.2), (6, 'flatfish', 0.5)]
percentages = np.ones((100, ))
for sample in indices:
percentages[sample[0]] = sample[2]
percentages = 1 - percentages
# dataloader
if opt.dataset == 'cifar100':
if opt.distill in ['crd']:
train_loader, val_loader, n_data = get_cifar100_dataloaders_sample(batch_size=opt.batch_size,
num_workers=opt.num_workers,
k=opt.nce_k,
mode=opt.mode)
elif not opt.bias:
train_loader, val_loader, n_data = get_cifar100_dataloaders(batch_size=opt.batch_size,
num_workers=opt.num_workers,
is_instance=True)
else:
train_loader, val_loader, n_data = get_cifar100_imbalanced(percentages, seed,
batch_size=opt.batch_size,
num_workers=opt.num_workers,
is_instance=True)
n_cls = 100
elif opt.dataset == 'imagenet':
train_loader, val_loader, n_data = get_imagenet_dataloader(batch_size=opt.batch_size,
num_workers=opt.num_workers,
is_instance=True)
n_cls = 1000
else:
raise NotImplementedError(opt.dataset)
# model
model_t = load_teacher(opt.path_t, n_cls)
#model_s = model_dict[opt.model_s](num_classes=n_cls)
model_s = load_teacher(opt.path_t, n_cls)
model_t.eval()
model_s.eval()
if 'pretrained_torch' not in opt.path_t:
data = torch.randn(2, 3, 32, 32)
feat_t, _ = model_t(data, is_feat=True)
feat_s, _ = model_s(data, is_feat=True)
else:
data = torch.randn(2, 3, 200, 200)
feat_t, _ = model_t(data)
feat_s, _ = model_s(data)
module_list = nn.ModuleList([])
module_list.append(model_s)
trainable_list = nn.ModuleList([])
trainable_list.append(model_s)
criterion_cls = nn.CrossEntropyLoss()
criterion_div = DistillKL(opt.kd_T)
if opt.distill == 'kd':
criterion_kd = DistillKL(opt.kd_T)
elif opt.distill == 'hint':
criterion_kd = HintLoss()
regress_s = ConvReg(feat_s[opt.hint_layer].shape, feat_t[opt.hint_layer].shape)
module_list.append(regress_s)
trainable_list.append(regress_s)
elif opt.distill == 'crd':
opt.s_dim = feat_s[-1].shape[1]
opt.t_dim = feat_t[-1].shape[1]
opt.n_data = n_data
criterion_kd = CRDLoss(opt)
module_list.append(criterion_kd.embed_s)
module_list.append(criterion_kd.embed_t)
trainable_list.append(criterion_kd.embed_s)
trainable_list.append(criterion_kd.embed_t)
elif opt.distill == 'all':
criterion_kd = AllHint()
elif opt.distill == 'attention':
criterion_kd = Attention()
elif opt.distill == 'nst':
criterion_kd = NSTLoss()
elif opt.distill == 'similarity':
criterion_kd = Similarity()
elif opt.distill == 'rkd':
criterion_kd = RKDLoss()
elif opt.distill == 'pkt':
criterion_kd = PKT()
elif opt.distill == 'kdsvd':
criterion_kd = KDSVD()
elif opt.distill == 'correlation':
criterion_kd = Correlation()
embed_s = LinearEmbed(feat_s[-1].shape[1], opt.feat_dim)
embed_t = LinearEmbed(feat_t[-1].shape[1], opt.feat_dim)
module_list.append(embed_s)
module_list.append(embed_t)
trainable_list.append(embed_s)
trainable_list.append(embed_t)
elif opt.distill == 'vid':
s_n = [f.shape[1] for f in feat_s[1:-1]]
t_n = [f.shape[1] for f in feat_t[1:-1]]
criterion_kd = nn.ModuleList(
[VIDLoss(s, t, t) for s, t in zip(s_n, t_n)]
)
# add this as some parameters in VIDLoss need to be updated
trainable_list.append(criterion_kd)
elif opt.distill == 'abound':
s_shapes = [f.shape for f in feat_s[1:-1]]
t_shapes = [f.shape for f in feat_t[1:-1]]
connector = Connector(s_shapes, t_shapes)
# init stage training
init_trainable_list = nn.ModuleList([])
init_trainable_list.append(connector)
init_trainable_list.append(model_s.get_feat_modules())
criterion_kd = ABLoss(len(feat_s[1:-1]))
init(model_s, model_t, init_trainable_list, criterion_kd, train_loader, logger, opt)
# classification
module_list.append(connector)
elif opt.distill == 'factor':
s_shape = feat_s[-2].shape
t_shape = feat_t[-2].shape
paraphraser = Paraphraser(t_shape)
translator = Translator(s_shape, t_shape)
# init stage training
init_trainable_list = nn.ModuleList([])
init_trainable_list.append(paraphraser)
criterion_init = nn.MSELoss()
init(model_s, model_t, init_trainable_list, criterion_init, train_loader, logger, opt)
# classification
criterion_kd = FactorTransfer()
module_list.append(translator)
module_list.append(paraphraser)
trainable_list.append(translator)
elif opt.distill == 'fsp':
s_shapes = [s.shape for s in feat_s[:-1]]
t_shapes = [t.shape for t in feat_t[:-1]]
criterion_kd = FSP(s_shapes, t_shapes)
# init stage training
init_trainable_list = nn.ModuleList([])
init_trainable_list.append(model_s.get_feat_modules())
init(model_s, model_t, init_trainable_list, criterion_kd, train_loader, logger, opt)
# classification training
pass
else:
raise NotImplementedError(opt.distill)
criterion_list = nn.ModuleList([])
criterion_list.append(criterion_cls) # classification loss
criterion_list.append(criterion_div) # KL divergence loss, original knowledge distillation
criterion_list.append(criterion_kd) # other knowledge distillation loss
# optimizer
optimizer = optim.SGD(trainable_list.parameters(),
lr=opt.learning_rate,
momentum=opt.momentum,
weight_decay=opt.weight_decay)
# append teacher after optimizer to avoid weight_decay
module_list.append(model_t)
if torch.cuda.is_available():
module_list.cuda()
criterion_list.cuda()
cudnn.benchmark = True
# validate teacher accuracy
teacher_acc, _, _ = validate(val_loader, model_t, criterion_cls, opt)
print('teacher accuracy: ', teacher_acc)
freq = 1
prune_end = int(opt.epochs * 0.75)
prune_sch = AgpPruningRate(.05, opt.target_sparsity, 1, prune_end, freq)
prune_layers = [module for module in module_list[0].modules()][:-1]
#prune_layers = module_list[0].get_feat_modules()
strat = opt.strat
# routine
#print(prune_layers)
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(epoch, opt, optimizer)
if epoch % freq == 1 and epoch <= prune_end:
target = prune_sch.step(epoch)
print(target)
print(f'pruning {target * 100}% sparsity')
if epoch > 1 and epoch < prune_end:
for i, layer in enumerate(prune_layers):
if type(layer) == nn.Conv2d or type(layer) == nn.Linear:
prune.remove(layer, "weight")
for i, layer in enumerate(prune_layers):
if type(layer) == nn.Conv2d or type(layer) == nn.Linear:
if "struct" in strat:
prune.ln_structured(layer, name="weight",
amount=float(target), n=1, dim=0)
elif 'finegrain' in strat:
prune.l1_unstructured(layer, name='weight',
amount=float(target))
layer_spar = float(torch.sum(layer.weight == 0))
layer_spar /= float(layer.weight.nelement())
print(f"Sparsity in layer {i} {type(layer)} {layer_spar: 3f}")
elif epoch > prune_end:
print("All done pruning")
print("==> training...")
time1 = time.time()
train_acc, train_loss = train(epoch, train_loader, module_list, criterion_list, optimizer, opt)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
logger.log_value('train_acc', train_acc, epoch)
logger.log_value('train_loss', train_loss, epoch)
test_acc, tect_acc_top5, test_loss = validate(val_loader, model_s, criterion_cls, opt)
logger.log_value('test_acc', test_acc, epoch)
logger.log_value('test_loss', test_loss, epoch)
logger.log_value('test_acc_top5', tect_acc_top5, epoch)
#save the best model
if test_acc > best_acc and epoch > prune_end:
best_acc = test_acc
state = {
'epoch': epoch,
'model': model_s.state_dict(),
'best_acc': best_acc,
}
save_file = os.path.join(opt.save_folder, '{}_best.pth'.format(opt.model_s))
print('saving the best model!')
torch.save(state, save_file)
#regular saving
if epoch % opt.save_freq == 0:
print('==> Saving...')
state = {
'epoch': epoch,
'model': model_s.state_dict(),
# 'accuracy': test_acc,
}
save_file = os.path.join(opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
torch.save(state, save_file)
# This best accuracy is only for printing purpose.
# The results reported in the paper/README is from the last epoch.
print('best accuracy:', best_acc)
# save model
state = {
'opt': opt,
'model': model_s.state_dict(),
}
save_file = os.path.join(opt.save_folder, '{}_last.pth'.format(opt.model_s))
torch.save(state, save_file)
if __name__ == '__main__':
main()