class_01
: Introduction to Machine Learning, Python Basics
class_02
: Libraries -- Numpy, Matplotlib
class_03
: KNN, Pandas, Generating Datasets
class_04
: Face Recognition using kNN and Haar Cascade
class_05
: KMeans Clustering (Lloyd's), Dominant Color Extraction and Image Segmentation
class_06
: Decision Trees, Random Forests
class_07
: Principal Component Analysis (PCA), PCA on MNIST
class_08
: Univariate, Multivariate Linear Regression
class_09
: Logistic Regression
class_10
: Neural Networks Theory, Manifolds
class_11
: NN from scratch using Numpy
class_12
: Convolutional Neural Networks (CNN)
class_13
: Autoencoders
class_14
: Web Scraping, NLTK
class_15
: Naive Bayes, Text Generation using Markov Chains
class_16
: Word Embeddings (Word2Vec, GloVe), Gensim
class_17
: Hands-on with CNN Projects
class_18
: RNN (IMDB Sentiment Analysis), GRU (theory), LSTM (Seq2Seq; Text Gen)
class_19
: Recommender Systems
class_20
: Transfer Learning, [DC]GAN on MNIST, Neural Art
class_21
: Overfitting, Genetic Algorithms, Intro to Reinforcement Learning