-
Notifications
You must be signed in to change notification settings - Fork 2
/
app_template.py
32 lines (25 loc) · 1.04 KB
/
app_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from os import walk
import tarfile
import gradio as gr
from huggingface_hub import hf_hub_download
from tensorflow import keras
from tensorflow.keras.applications import resnet50
def load_model(tar_file: str='outputs/model.tar.gz'):
tar_file = tarfile.open(tar_file)
tar_file.extractall('.')
tar_file.close()
model_path = 'model'
return keras.models.load_model(model_path)
filepath = hf_hub_download(repo_id='$MODEL_REPO_ID', filename='outputs/model.tar.gz', force_filename='model.tar.gz')
model = load_model(tar_file=filepath)
labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
def classify_image(inp):
inp = inp.reshape((-1, 224, 224, 3))
inp = resnet50.preprocess_input(inp)
prediction = model.predict(inp).flatten()
confidences = {labels[i]: float(prediction[i]) for i in range(10)}
return confidences
iface = gr.Interface(fn=classify_image,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs=gr.outputs.Label(num_top_classes=3)).launch()
iface.launch()