-
Notifications
You must be signed in to change notification settings - Fork 108
/
models.py
788 lines (644 loc) · 25.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
"""rio-tiler models."""
import itertools
import warnings
from typing import Any, Dict, List, Literal, Optional, Sequence, Tuple, Union
import attr
import numpy
from affine import Affine
from color_operations import parse_operations, scale_dtype, to_math_type
from numpy.typing import NDArray
from pydantic import BaseModel
from rasterio import windows
from rasterio.coords import BoundingBox
from rasterio.crs import CRS
from rasterio.dtypes import dtype_ranges
from rasterio.enums import ColorInterp
from rasterio.errors import NotGeoreferencedWarning
from rasterio.features import rasterize
from rasterio.io import MemoryFile
from rasterio.plot import reshape_as_image
from rasterio.transform import from_bounds
from rasterio.warp import transform_geom
from typing_extensions import Self
from rio_tiler.colormap import apply_cmap
from rio_tiler.constants import WGS84_CRS
from rio_tiler.errors import InvalidDatatypeWarning, InvalidPointDataError
from rio_tiler.expression import apply_expression, get_expression_blocks
from rio_tiler.types import (
BBox,
ColorMapType,
GDALColorMapType,
IntervalTuple,
NumType,
RIOResampling,
)
from rio_tiler.utils import (
_validate_shape_input,
get_array_statistics,
linear_rescale,
non_alpha_indexes,
render,
resize_array,
)
class Bounds(BaseModel):
"""Dataset Bounding box"""
bounds: BBox
crs: str
class Info(Bounds):
"""Dataset Info."""
band_metadata: List[Tuple[str, Dict]]
band_descriptions: List[Tuple[str, str]]
dtype: str
nodata_type: Literal["Alpha", "Mask", "Internal", "Nodata", "None"]
colorinterp: Optional[List[str]] = None
scales: Optional[List[float]] = None
offsets: Optional[List[float]] = None
colormap: Optional[GDALColorMapType] = None
model_config = {"extra": "allow"}
class BandStatistics(BaseModel):
"""Band statistics"""
min: float
max: float
mean: float
count: float
sum: float
std: float
median: float
majority: float
minority: float
unique: float
histogram: List[List[NumType]]
valid_percent: float
masked_pixels: float
valid_pixels: float
model_config = {"extra": "allow"}
def to_coordsbbox(bbox) -> Optional[BoundingBox]:
"""Convert bbox to CoordsBbox nameTuple."""
return BoundingBox(*bbox) if bbox else None
def rescale_image(
array: numpy.ma.MaskedArray,
in_range: Sequence[IntervalTuple],
out_range: Sequence[IntervalTuple] = ((0, 255),),
out_dtype: Union[str, numpy.number] = "uint8",
) -> numpy.ma.MaskedArray:
"""Rescale image data in-place."""
if len(array.shape) < 3:
array = numpy.expand_dims(array, axis=0)
nbands = array.shape[0]
if len(in_range) != nbands:
in_range = ((in_range[0]),) * nbands
if len(out_range) != nbands:
out_range = ((out_range[0]),) * nbands
for bdx in range(nbands):
array.data[bdx] = numpy.where(
~array.mask[bdx],
linear_rescale(
array.data[bdx], in_range=in_range[bdx], out_range=out_range[bdx]
),
0,
)
return array.astype(out_dtype)
def to_masked(array: numpy.ndarray) -> numpy.ma.MaskedArray:
"""Makes sure we have a MaskedArray."""
if not numpy.ma.isarray(array):
array = numpy.ma.asarray(array)
# when a masked array is totally valid, the mask is set to numpy.ma.nomask
# https://numpy.org/doc/stable/reference/maskedarray.baseclass.html#numpy.ma.nomask
# doing `array.mask = False` force the creation of the mask array
if not array.mask.shape:
array.mask = False
return array
@attr.s
class PointData:
"""Point Data class.
Attributes:
array (numpy.ma.MaskedArray): pixel values.
band_names (list): name of each band. Defaults to `["1", "2", "3"]` for 3 bands image.
coordinates (tuple): Point's coordinates.
crs (rasterio.crs.CRS, optional): Coordinates Reference System of the bounds.
assets (list, optional): list of assets used to construct the data values.
metadata (dict, optional): Additional metadata. Defaults to `{}`.
"""
array: numpy.ma.MaskedArray = attr.ib(converter=to_masked)
band_names: List[str] = attr.ib(kw_only=True)
coordinates: Optional[Tuple[float, float]] = attr.ib(default=None, kw_only=True)
crs: Optional[CRS] = attr.ib(default=None, kw_only=True)
assets: Optional[List] = attr.ib(default=None, kw_only=True)
metadata: Optional[Dict] = attr.ib(factory=dict, kw_only=True)
@array.validator
def _validate_data(self, attribute, value):
"""PointsData data has to be a 1d array."""
if not len(value.shape) == 1:
raise ValueError("PointsData data has to be a 1D array")
@coordinates.validator
def _validate_coordinates(self, attribute, value):
"""coordinates has to be a 2d list."""
if value and not len(value) == 2:
raise ValueError("Coordinates data has to be a 2d list")
@band_names.default
def _default_names(self):
return [f"b{ix + 1}" for ix in range(self.count)]
###########################################################################
# For compatibility
@property
def data(self) -> numpy.ndarray:
"""Return data part of the masked array."""
return self.array.data
@property
def mask(self) -> numpy.ndarray:
"""Return Mask in form of rasterio dataset mask."""
return numpy.array([numpy.logical_and.reduce(~self.array.mask)]) * numpy.uint8(
255
)
###########################################################################
def __iter__(self):
"""Allow for variable expansion."""
for i in self.array.data:
yield i
@property
def count(self) -> int:
"""Number of band."""
return self.array.shape[0]
@classmethod
def create_from_list(cls, data: Sequence["PointData"]) -> Self:
"""Create PointData from a sequence of PointsData objects.
Args:
data (sequence): sequence of PointData.
"""
if not data:
raise InvalidPointDataError("Empty PointData list.")
# validate coordinates
if all(pt.coordinates or pt.crs or None for pt in data):
lon, lat, crs = zip(*[(*(pt.coordinates or []), pt.crs) for pt in data])
if len(set(lon)) > 1 or len(set(lat)) > 1 or len(set(crs)) > 1:
raise InvalidPointDataError(
"Cannot concatenate points with different coordinates/CRS."
)
arr = numpy.ma.concatenate([pt.array for pt in data])
assets = list(
dict.fromkeys(
itertools.chain.from_iterable([pt.assets for pt in data if pt.assets])
)
)
band_names = list(
itertools.chain.from_iterable([pt.band_names for pt in data if pt.band_names])
)
metadata = dict(
itertools.chain.from_iterable(
[pt.metadata.items() for pt in data if pt.metadata]
)
)
return cls(
arr,
assets=assets,
crs=data[0].crs,
coordinates=data[0].coordinates,
band_names=band_names,
metadata=metadata,
)
def apply_expression(self, expression: str) -> "PointData":
"""Apply expression to the image data."""
blocks = get_expression_blocks(expression)
data = apply_expression(blocks, self.band_names, self.array)
# Using numexpr do not preserve mask info
data.mask = False
return PointData(
data,
assets=self.assets,
crs=self.crs,
coordinates=self.coordinates,
band_names=blocks,
metadata=self.metadata,
)
def masked_and_3d(array: numpy.ndarray) -> numpy.ma.MaskedArray:
"""Makes sure we have a 3D array and mask"""
if not numpy.ma.isarray(array):
array = numpy.ma.asarray(array)
if len(array.shape) < 3:
array = numpy.expand_dims(array, axis=0)
# when a masked array is totally valid, the mask is set to numpy.ma.nomask
# https://numpy.org/doc/stable/reference/maskedarray.baseclass.html#numpy.ma.nomask
# doing `array.mask = False` force the creation of the mask array
if not array.mask.shape:
array.mask = False
return array
@attr.s
class ImageData:
"""Image Data class.
Attributes:
array (numpy.ma.MaskedArray): image values.
assets (list, optional): list of assets used to construct the data values.
bounds (BoundingBox, optional): bounding box of the data.
crs (rasterio.crs.CRS, optional): Coordinates Reference System of the bounds.
metadata (dict, optional): Additional metadata. Defaults to `{}`.
band_names (list, optional): name of each band. Defaults to `["1", "2", "3"]` for 3 bands image.
dataset_statistics (list, optional): dataset statistics `[(min, max), (min, max)]`
Note: `mask` should be considered as `PER_BAND` so shape should be similar as the data
"""
array: numpy.ma.MaskedArray = attr.ib(converter=masked_and_3d)
assets: Optional[List] = attr.ib(default=None, kw_only=True)
bounds: Optional[BoundingBox] = attr.ib(
default=None, converter=to_coordsbbox, kw_only=True
)
crs: Optional[CRS] = attr.ib(default=None, kw_only=True)
metadata: Optional[Dict] = attr.ib(factory=dict, kw_only=True)
band_names: Optional[List[str]] = attr.ib(kw_only=True)
dataset_statistics: Optional[Sequence[Tuple[float, float]]] = attr.ib(
default=None, kw_only=True
)
cutline_mask: Optional[numpy.ndarray] = attr.ib(default=None)
@band_names.default
def _default_names(self):
return [f"b{ix + 1}" for ix in range(self.count)]
###########################################################################
# For compatibility
@property
def data(self) -> numpy.ndarray:
"""Return data part of the masked array."""
return self.array.data
@property
def mask(self) -> numpy.ndarray:
"""Return Mask in form of rasterio dataset mask."""
return numpy.logical_or.reduce(~self.array.mask) * numpy.uint8(255)
###########################################################################
def __iter__(self):
"""Allow for variable expansion (``arr, mask = ImageData``)"""
for i in (self.array.data, self.mask):
yield i
@classmethod
def from_bytes(cls, data: bytes) -> Self:
"""Create ImageData from bytes.
Args:
data (bytes): raster dataset as bytes.
"""
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
category=NotGeoreferencedWarning,
module="rasterio",
)
with MemoryFile(data) as m:
with m.open() as dataset:
indexes = non_alpha_indexes(dataset)
if ColorInterp.alpha in dataset.colorinterp:
alpha_idx = dataset.colorinterp.index(ColorInterp.alpha) + 1
idx = tuple(indexes) + (alpha_idx,)
array = dataset.read(indexes=idx)
mask = ~array[-1].astype("bool")
array = numpy.ma.MaskedArray(array[0:-1])
array.mask = mask
else:
array = dataset.read(indexes=indexes, masked=True)
stats = []
for ix in indexes:
tags = dataset.tags(ix)
if all(
stat in tags
for stat in ["STATISTICS_MINIMUM", "STATISTICS_MAXIMUM"]
):
stat_min = float(tags.get("STATISTICS_MINIMUM"))
stat_max = float(tags.get("STATISTICS_MAXIMUM"))
stats.append((stat_min, stat_max))
dataset_statistics = stats if len(stats) == len(indexes) else None
return cls(
array,
crs=dataset.crs,
bounds=dataset.bounds,
dataset_statistics=dataset_statistics,
)
@classmethod
def create_from_list(cls, data: Sequence["ImageData"]) -> Self:
"""Create ImageData from a sequence of ImageData objects.
Args:
data (sequence): sequence of ImageData.
"""
h, w = zip(*[(img.height, img.width) for img in data])
# Get cutline mask at highest resolution.
max_h, max_w = max(h), max(w)
cutline_mask = next(
img.cutline_mask for img in data if img.height == max_h and img.width == max_w
)
if len(set(h)) > 1 or len(set(w)) > 1:
warnings.warn(
"Cannot concatenate images with different size. Will resize using max width/heigh",
UserWarning,
)
for img in data:
if img.height == max_h and img.width == max_w:
continue
arr = numpy.ma.MaskedArray(
resize_array(img.array.data, max_h, max_w),
mask=resize_array(img.array.mask * 1, max_h, max_w).astype("bool"),
)
img.array = arr
arr = numpy.ma.concatenate([img.array for img in data])
assets = list(
dict.fromkeys(
itertools.chain.from_iterable([img.assets for img in data if img.assets])
)
)
bounds_values = [img.bounds for img in data if img.bounds]
bounds = bounds_values[0] if bounds_values else None
crs_values = [img.crs for img in data if img.crs]
crs = crs_values[0] if crs_values else None
band_names = list(
itertools.chain.from_iterable(
[img.band_names for img in data if img.band_names]
)
)
stats = list(
itertools.chain.from_iterable(
[img.dataset_statistics for img in data if img.dataset_statistics]
)
)
dataset_statistics = stats if len(stats) == len(band_names) else None
metadata = dict(
itertools.chain.from_iterable(
[img.metadata.items() for img in data if img.metadata]
)
)
return cls(
arr,
assets=assets,
crs=crs,
bounds=bounds,
band_names=band_names,
dataset_statistics=dataset_statistics,
cutline_mask=cutline_mask,
metadata=metadata,
)
def data_as_image(self) -> numpy.ndarray:
"""Return the data array reshaped into an image processing/visualization software friendly order.
(bands, rows, columns) -> (rows, columns, bands).
"""
return reshape_as_image(self.array)
@property
def width(self) -> int:
"""Width of the data array."""
return self.array.shape[2]
@property
def height(self) -> int:
"""Height of the data array."""
return self.array.shape[1]
@property
def count(self) -> int:
"""Number of band."""
return self.array.shape[0]
@property
def transform(self) -> Affine:
"""Returns the affine transform."""
return (
from_bounds(*self.bounds, self.width, self.height)
if self.bounds
else Affine.scale(self.width, -self.height)
)
def rescale(
self,
in_range: Sequence[IntervalTuple],
out_range: Sequence[IntervalTuple] = ((0, 255),),
out_dtype: Union[str, numpy.number] = "uint8",
) -> Self:
"""Rescale data in place."""
self.array = rescale_image(
self.array.copy(),
in_range=in_range,
out_range=out_range,
out_dtype=out_dtype,
)
return self
def apply_colormap(self, colormap: ColorMapType) -> "ImageData":
"""Apply colormap to the image data."""
data, alpha = apply_cmap(self.array.data, colormap)
# Use Dataset Mask which is fine
# because in theory self.array should be a 1 band image
array = numpy.ma.MaskedArray(data)
array.mask = numpy.bitwise_and(alpha, self.mask) == 0
return ImageData(
array,
assets=self.assets,
crs=self.crs,
bounds=self.bounds,
metadata=self.metadata,
)
def apply_color_formula(self, color_formula: Optional[str]) -> Self:
"""Apply color-operations formula in place."""
out = self.array.data.copy()
out[out < 0] = 0
for ops in parse_operations(color_formula):
out = scale_dtype(ops(to_math_type(out)), numpy.uint8)
data = numpy.ma.MaskedArray(out)
data.mask = self.array.mask
self.array = data
return self
def apply_expression(self, expression: str) -> "ImageData":
"""Apply expression to the image data."""
blocks = get_expression_blocks(expression)
stats = self.dataset_statistics
if stats:
res = []
for prod in itertools.product(*stats): # type: ignore
res.append(apply_expression(blocks, self.band_names, numpy.array(prod)))
stats = list(
zip(
[min(r) for r in zip(*res)],
[max(r) for r in zip(*res)],
)
)
data = apply_expression(blocks, self.band_names, self.array)
# NOTE: We use dataset mask when mixing bands
data.mask = numpy.logical_or.reduce(self.array.mask)
return ImageData(
data,
assets=self.assets,
crs=self.crs,
bounds=self.bounds,
band_names=blocks,
metadata=self.metadata,
dataset_statistics=stats,
)
def resize(
self,
height: int,
width: int,
resampling_method: RIOResampling = "nearest",
) -> "ImageData":
"""Resize data and mask."""
data = resize_array(self.array.data, height, width, resampling_method)
mask = resize_array(self.array.mask * 1, height, width, resampling_method).astype(
"bool"
)
return ImageData(
numpy.ma.MaskedArray(data, mask=mask),
assets=self.assets,
crs=self.crs,
bounds=self.bounds,
band_names=self.band_names,
metadata=self.metadata,
dataset_statistics=self.dataset_statistics,
)
def clip(self, bbox: BBox) -> "ImageData":
"""Clip data and mask to a bbox."""
row_slice, col_slice = windows.from_bounds(
*bbox, transform=self.transform
).toslices()
return ImageData(
self.array[:, row_slice, col_slice].copy(),
assets=self.assets,
crs=self.crs,
bounds=bbox,
band_names=self.band_names,
metadata=self.metadata,
dataset_statistics=self.dataset_statistics,
)
def post_process(
self,
in_range: Optional[Sequence[IntervalTuple]] = None,
out_dtype: Union[str, numpy.number] = "uint8",
color_formula: Optional[str] = None,
**kwargs: Any,
) -> "ImageData":
"""Post-process image data.
Args:
in_range (tuple): input min/max bounds value to rescale from.
out_dtype (str, optional): output datatype after rescaling. Defaults to `uint8`.
color_formula (str, optional): color-ops formula (see: https://github.com/vincentsarago/color-ops).
kwargs (optional): keyword arguments to forward to `rio_tiler.utils.linear_rescale`.
Returns:
ImageData: new ImageData object with the updated data.
Examples:
>>> img.post_process(in_range=((0, 16000), ))
>>> img.post_process(color_formula="Gamma RGB 4.1")
"""
array = self.array.copy()
if in_range:
array = rescale_image(array, in_range, out_dtype=out_dtype, **kwargs)
if color_formula:
array[array < 0] = 0
for ops in parse_operations(color_formula):
array = scale_dtype(ops(to_math_type(array)), numpy.uint8)
array.mask = self.array.mask
return ImageData(
array,
crs=self.crs,
bounds=self.bounds,
assets=self.assets,
metadata=self.metadata,
)
def render(
self,
add_mask: bool = True,
img_format: str = "PNG",
colormap: Optional[ColorMapType] = None,
**kwargs,
) -> bytes:
"""Render data to image blob.
Args:
add_mask (bool, optional): add mask to output image. Defaults to `True`.
img_format (str, optional): output image format. Defaults to `PNG`.
colormap (dict or sequence, optional): RGBA Color Table dictionary or sequence.
kwargs (optional): keyword arguments to forward to `rio_tiler.utils.render`.
Returns:
bytes: image.
"""
img_format = img_format.upper()
if img_format == "GTIFF":
if "transform" not in kwargs:
kwargs.update({"transform": self.transform})
if "crs" not in kwargs and self.crs:
kwargs.update({"crs": self.crs})
array = self.array.copy()
datatype_range = self.dataset_statistics or (dtype_ranges[str(array.dtype)],)
if not colormap:
if img_format in ["PNG"] and array.dtype not in ["uint8", "uint16"]:
warnings.warn(
f"Invalid type: `{array.dtype}` for the `{img_format}` driver. Data will be rescaled using min/max type bounds or dataset_statistics.",
InvalidDatatypeWarning,
)
array = rescale_image(array, in_range=datatype_range)
elif img_format in ["JPEG", "WEBP"] and array.dtype not in ["uint8"]:
warnings.warn(
f"Invalid type: `{array.dtype}` for the `{img_format}` driver. Data will be rescaled using min/max type bounds or dataset_statistics.",
InvalidDatatypeWarning,
)
array = rescale_image(array, in_range=datatype_range)
elif img_format in ["JP2OPENJPEG"] and array.dtype not in [
"uint8",
"int16",
"uint16",
]:
warnings.warn(
f"Invalid type: `{array.dtype}` for the `{img_format}` driver. Data will be rescaled using min/max type bounds or dataset_statistics.",
InvalidDatatypeWarning,
)
array = rescale_image(array, in_range=datatype_range)
if add_mask:
return render(
array.data,
self.mask, # We use dataset mask for rendering
img_format=img_format,
colormap=colormap,
**kwargs,
)
return render(array.data, img_format=img_format, colormap=colormap, **kwargs)
def statistics(
self,
categorical: bool = False,
categories: Optional[List[float]] = None,
percentiles: Optional[List[int]] = None,
hist_options: Optional[Dict] = None,
coverage: Optional[numpy.ndarray] = None,
) -> Dict[str, BandStatistics]:
"""Return statistics from ImageData."""
hist_options = hist_options or {}
stats = get_array_statistics(
self.array,
categorical=categorical,
categories=categories,
percentiles=percentiles,
coverage=coverage,
**hist_options,
)
return {
f"{self.band_names[ix]}": BandStatistics(**stats[ix])
for ix in range(len(stats))
}
def get_coverage_array(
self,
shape: Dict,
shape_crs: CRS = WGS84_CRS,
cover_scale: int = 10,
) -> NDArray[numpy.floating]:
"""Post-process image data.
Args:
shape (Dict): GeoJSON geometry or Feature.
shape_crs (rasterio.crs.CRS): Coordinates Reference System of shape.
cover_scale (int, optional):
Scale used when generating coverage estimates of each
raster cell by vector feature. Coverage is generated by
rasterizing the feature at a finer resolution than the raster then using a summation to aggregate
to the raster resolution and dividing by the square of cover_scale
to get coverage value for each cell. Increasing cover_scale
will increase the accuracy of coverage values; three orders
magnitude finer resolution (cover_scale=1000) is usually enough to
get coverage estimates with <1% error in individual edge cells coverage
estimates, though much smaller values (e.g., cover_scale=10) are often
sufficient (<10% error) and require less memory.
Returns:
numpy.array: percent coverage.
Note: code adapted from https://github.com/perrygeo/python-rasterstats/pull/136 by @sgoodm
"""
shape = _validate_shape_input(shape)
if self.crs != shape_crs:
shape = transform_geom(shape_crs, self.crs, shape)
cover_array = rasterize(
[(shape, 1)],
out_shape=(self.height * cover_scale, self.width * cover_scale),
transform=self.transform * Affine.scale(1 / cover_scale),
all_touched=True,
fill=0,
dtype="uint8",
)
cover_array = cover_array.reshape(
(self.height, cover_scale, self.width, cover_scale)
).astype("float32")
return cover_array.sum(-1).sum(1) / (cover_scale**2)