-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlistobject.c
3784 lines (3378 loc) · 109 KB
/
listobject.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* List object implementation */
#include "Python.h"
#include "pycore_abstract.h" // _PyIndex_Check()
#include "pycore_critical_section.h"
#include "pycore_interp.h" // PyInterpreterState.list
#include "pycore_list.h" // struct _Py_list_state, _PyListIterObject
#include "pycore_object.h" // _PyObject_GC_TRACK()
#include "pycore_tuple.h" // _PyTuple_FromArray()
#include <stddef.h>
#include "mimalloc.h"
#include "mimalloc-internal.h"
/*[clinic input]
class list "PyListObject *" "&PyList_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f9b222678f9f71e0]*/
#include "clinic/listobject.c.h"
_Py_DECLARE_STR(list_err, "list index out of range");
#if PyList_MAXFREELIST > 0
static struct _Py_list_state *
get_list_state(void)
{
return &((PyThreadStateImpl *)_PyThreadState_GET())->list;
}
#endif
static size_t
list_good_size(Py_ssize_t size)
{
// 4, 8, 16, 24, 32, 40, 48, 64, 80, ...
// NOTE: we add one here so that the rounding accounts for the "allocated"
// field in _PyListArray.
size_t reqsize = (size_t)size + 1;
if (reqsize <= 4) {
reqsize = 4;
}
else if (reqsize <= 48) {
reqsize = (reqsize + 7) & ~7;
}
else {
reqsize = (reqsize + 15) & ~15;
if (reqsize <= MI_MEDIUM_OBJ_WSIZE_MAX) {
reqsize = mi_good_size(reqsize * sizeof(PyObject *))/sizeof(PyObject*);
}
else {
// ensure geometric spacing for large arrays
size_t shift = mi_bsr(reqsize) - 2;
reqsize = ((reqsize >> shift) + 1) << shift;
}
}
return reqsize - 1;
}
static _PyListArray *
list_allocate_array(size_t capacity)
{
if (capacity > PY_SSIZE_T_MAX/sizeof(PyObject*) - 1) {
return NULL;
}
_PyListArray *arr = PyMem_Malloc(sizeof(_PyListArray) + (capacity - 1) * sizeof(PyObject *));
if (arr == NULL) {
return NULL;
}
arr->allocated = capacity;
return arr;
}
static _PyListArray *
list_array(PyObject **items)
{
char *mem = (char *)items;
mem -= offsetof(_PyListArray, ob_item);
return (_PyListArray *)mem;
}
static void
free_list_array(PyObject **items, bool use_qsbr)
{
_PyListArray *arr = list_array(items);
if (use_qsbr) {
_PyMem_FreeQsbr(arr);
}
else {
PyMem_Free(arr);
}
}
/* Ensure ob_item has room for at least newsize elements, and set
* ob_size to newsize. If newsize > ob_size on entry, the content
* of the new slots at exit is undefined heap trash; it's the caller's
* responsibility to overwrite them with sane values.
* The number of allocated elements may grow, shrink, or stay the same.
* Note that self->ob_item may change, and even if newsize is less
* than ob_size on entry.
*/
static int
list_ensure_capacity_slow(PyListObject *self, Py_ssize_t base, Py_ssize_t extra)
{
if (base > PY_SSIZE_T_MAX/(Py_ssize_t)sizeof(PyObject*) - extra) {
PyErr_NoMemory();
return -1;
}
Py_ssize_t reqsize = base + extra;
Py_ssize_t allocated = self->allocated;
if (allocated >= reqsize) {
assert(self->ob_item != NULL || reqsize == 0);
return 0;
}
if (!_Py_ThreadLocal((PyObject *)self)) {
_PyObject_GC_SET_SHARED(self);
}
size_t capacity = list_good_size(reqsize);
_PyListArray *arr = list_allocate_array(capacity);
if (arr == NULL) {
PyErr_NoMemory();
return -1;
}
PyObject **old = self->ob_item;
if (self->ob_item) {
memcpy(&arr->ob_item, self->ob_item, allocated * sizeof(PyObject*));
}
_Py_atomic_store_ptr_release(&self->ob_item, &arr->ob_item);
self->allocated = capacity;
if (old) {
free_list_array(old, _PyObject_GC_IS_SHARED(self));
}
return 0;
}
static int
list_ensure_capacity(PyListObject *self, Py_ssize_t base, Py_ssize_t extra)
{
if (base > self->allocated - extra) {
return list_ensure_capacity_slow(self, base, extra);
}
return 0;
}
static int
list_ensure_capacity_single(PyListObject *self, Py_ssize_t size)
{
if (self->allocated <= size) {
return list_ensure_capacity_slow(self, size, 1);
}
return 0;
}
/* Ensure ob_item has room for at least newsize elements, and set
* ob_size to newsize. If newsize > ob_size on entry, the content
* of the new slots at exit is undefined heap trash; it's the caller's
* responsibility to overwrite them with sane values.
* The number of allocated elements may grow, shrink, or stay the same.
* Failure is impossible if newsize <= self.allocated on entry, although
* that partly relies on an assumption that the system realloc() never
* fails when passed a number of bytes <= the number of bytes last
* allocated (the C standard doesn't guarantee this, but it's hard to
* imagine a realloc implementation where it wouldn't be true).
* Note that self->ob_item may change, and even if newsize is less
* than ob_size on entry.
*/
static int
list_resize(PyListObject *self, Py_ssize_t newsize)
{
if (list_ensure_capacity(self, newsize, 0) != 0) {
return -1;
}
Py_SET_SIZE(self, newsize);
return 0;
}
void
_PyList_ClearFreeList(PyThreadState *tstate)
{
#if PyList_MAXFREELIST > 0
struct _Py_list_state *state = &((PyThreadStateImpl *)tstate)->list;
while (state->numfree) {
PyListObject *op = state->free_list[--state->numfree];
assert(PyList_CheckExact(op));
PyObject_GC_Del(op);
}
#endif
}
void
_PyList_Fini(PyThreadState *tstate)
{
_PyList_ClearFreeList(tstate);
#if defined(Py_DEBUG) && PyList_MAXFREELIST > 0
struct _Py_list_state *state = &((PyThreadStateImpl *)tstate)->list;
state->numfree = -1;
#endif
}
/* Print summary info about the state of the optimized allocator */
void
_PyList_DebugMallocStats(FILE *out)
{
#if PyList_MAXFREELIST > 0
struct _Py_list_state *state = get_list_state();
_PyDebugAllocatorStats(out,
"free PyListObject",
state->numfree, sizeof(PyListObject));
#endif
}
static PyListObject *
list_new(Py_ssize_t size)
{
PyListObject *op;
assert(size >= 0);
#if PyList_MAXFREELIST > 0
struct _Py_list_state *state = get_list_state();
#ifdef Py_DEBUG
// PyList_New() must not be called after _PyList_Fini()
assert(state->numfree != -1);
#endif
if (PyList_MAXFREELIST && state->numfree) {
state->numfree--;
op = state->free_list[state->numfree];
OBJECT_STAT_INC(from_freelist);
_Py_NewReference((PyObject *)op);
}
else
#endif
{
op = PyObject_GC_New(PyListObject, &PyList_Type);
if (!op) {
return NULL;
}
}
if (size <= 0) {
op->ob_item = NULL;
op->allocated = 0;
}
else {
size_t capacity = list_good_size(size);
_PyListArray *arr = list_allocate_array(capacity);
if (arr == NULL) {
op->ob_item = NULL;
Py_DECREF(op);
PyErr_NoMemory();
return NULL;
}
op->ob_item = arr->ob_item;
op->allocated = capacity;
}
Py_SET_SIZE(op, size);
_PyObject_GC_TRACK(op);
return op;
}
PyObject *
PyList_New(Py_ssize_t size)
{
if (size < 0) {
PyErr_BadInternalCall();
return NULL;
}
PyListObject *op = list_new(size);
if (op && op->ob_item) {
PyObject **items = op->ob_item;
for (Py_ssize_t i = 0, n = op->allocated; i < n; i++) {
_Py_atomic_store_ptr_relaxed(&items[i], NULL);
}
}
return (PyObject *) op;
}
Py_ssize_t
PyList_Size(PyObject *op)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
else
return Py_SIZE(op);
}
static inline int
valid_index(Py_ssize_t i, Py_ssize_t limit)
{
/* The cast to size_t lets us use just a single comparison
to check whether i is in the range: 0 <= i < limit.
See: Section 14.2 "Bounds Checking" in the Agner Fog
optimization manual found at:
https://www.agner.org/optimize/optimizing_cpp.pdf
*/
return (size_t) i < (size_t) limit;
}
Py_NO_INLINE static PyObject *
list_item_locked(PyListObject *self, Py_ssize_t idx, PyObject *dead)
{
Py_XDECREF(dead);
PyObject *item = NULL;
Py_BEGIN_CRITICAL_SECTION(self);
if (!_PyObject_GC_IS_SHARED(self)) {
_PyObject_GC_SET_SHARED(self);
}
Py_ssize_t size = Py_SIZE(self);
if (!valid_index(idx, size)) {
goto exit;
}
item = Py_NewRef(self->ob_item[idx]);
exit:
Py_END_CRITICAL_SECTION;
return item;
}
static int
list_needs_read_lock(PyListObject *self)
{
return (!_Py_ThreadLocal((PyObject *)self) &&
!_PyObject_GC_IS_SHARED(self));
}
static inline PyObject *
list_fetch_item(PyListObject *self, Py_ssize_t idx)
{
if (list_needs_read_lock(self)) {
return list_item_locked(self, idx, NULL);
}
Py_ssize_t size = _Py_atomic_load_ssize_relaxed(&((PyVarObject *)self)->ob_size);
if (!valid_index(idx, size)) {
return NULL;
}
PyObject **ob_item = _Py_atomic_load_ptr(&self->ob_item);
if (ob_item == NULL) {
return NULL;
}
if (!valid_index(idx, _PyList_Capacity(ob_item))) {
return NULL;
}
PyObject *item = _Py_atomic_load_ptr(&ob_item[idx]);
if (_PY_UNLIKELY(!item)) {
return list_item_locked(self, idx, NULL);
}
if (_PY_LIKELY(_Py_TryIncrefFast(item))) {
goto check_array;
}
if (!_Py_TryIncRefShared(item)) {
return list_item_locked(self, idx, NULL);
}
if (_PY_UNLIKELY(item != _Py_atomic_load_ptr(&ob_item[idx]))) {
return list_item_locked(self, idx, item);
}
check_array:
if (_PY_UNLIKELY(ob_item != _Py_atomic_load_ptr(&self->ob_item))) {
return list_item_locked(self, idx, item);
}
return item;
}
static PyObject *
list_item(PyListObject *self, Py_ssize_t idx)
{
PyObject *item = list_fetch_item(self, idx);
if (!item) {
_Py_DECLARE_STR(list_err, "list index out of range");
PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
return NULL;
}
return item;
}
PyObject *
PyList_GetItem(PyObject *op, Py_ssize_t i)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
if (!valid_index(i, Py_SIZE(op))) {
_Py_DECLARE_STR(list_err, "list index out of range");
PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
return NULL;
}
return ((PyListObject *)op) -> ob_item[i];
}
PyObject *
PyList_FetchItem(PyObject *op, Py_ssize_t i)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return list_item(((PyListObject *)op), i);
}
static int
setitem(PyListObject *self, Py_ssize_t i, PyObject *newitem)
{
if (!valid_index(i, Py_SIZE(self))) {
Py_XDECREF(newitem);
PyErr_SetString(PyExc_IndexError,
"list assignment index out of range");
return -1;
}
PyObject *tmp = self->ob_item[i];
self->ob_item[i] = newitem;
Py_XDECREF(tmp);
return 0;
}
int
PyList_SetItem(PyObject *op, Py_ssize_t i,
PyObject *newitem)
{
if (!PyList_Check(op)) {
Py_XDECREF(newitem);
PyErr_BadInternalCall();
return -1;
}
int ret;
PyListObject *self = ((PyListObject *)op);
Py_BEGIN_CRITICAL_SECTION(self);
ret = setitem(self, i, newitem);
Py_END_CRITICAL_SECTION;
return ret;
}
static void
PyList_SetSize(PyListObject *self, Py_ssize_t size)
{
// TODO(sgross): release?
_Py_atomic_store_ssize_relaxed(&((PyVarObject *)self)->ob_size, size);
}
#define PyList_SET_SIZE PyList_SetSize
static int
ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
{
Py_ssize_t n = Py_SIZE(self);
if (list_ensure_capacity_single(self, n) < 0) {
return -1;
}
if (where < 0) {
where += n;
if (where < 0)
where = 0;
}
if (where > n)
where = n;
PyObject **items = self->ob_item;
for (Py_ssize_t i = n; --i >= where; ) {
_Py_atomic_store_ptr_relaxed(&items[i+1], items[i]);
}
_Py_atomic_store_ptr_relaxed(&items[where], Py_NewRef(v));
PyList_SetSize(self, n+1);
return 0;
}
int
PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
int err;
PyListObject *self = (PyListObject *)op;
Py_BEGIN_CRITICAL_SECTION(self);
err = ins1(self, where, newitem);
Py_END_CRITICAL_SECTION;
return err;
}
static int
app1(PyListObject *self, PyObject *v)
{
Py_ssize_t n = Py_SIZE(self);
if (list_ensure_capacity_single(self, n) < 0) {
return -1;
}
_Py_atomic_store_ptr_relaxed(&self->ob_item[n], Py_NewRef(v));
PyList_SetSize(self, n+1);
return 0;
}
int
_PyList_AppendPrivate(PyObject *op, PyObject *v)
{
return app1((PyListObject *)op, v);
}
/* internal, used by _PyList_AppendTakeRef */
int
_PyList_AppendTakeRefListResize(PyListObject *self, PyObject *newitem)
{
Py_ssize_t len = PyList_GET_SIZE(self);
assert(self->allocated == -1 || self->allocated == len);
if (list_resize(self, len + 1) < 0) {
Py_DECREF(newitem);
return -1;
}
PyList_SET_ITEM(self, len, newitem);
return 0;
}
int
PyList_Append(PyObject *op, PyObject *newitem)
{
if (!PyList_Check(op) || newitem == NULL) {
PyErr_BadInternalCall();
return -1;
}
int ret;
PyListObject *self = (PyListObject *)op;
Py_BEGIN_CRITICAL_SECTION(self);
ret = app1(self, newitem);
Py_END_CRITICAL_SECTION;
return ret;
}
/* Methods */
static void
list_dealloc(PyListObject *op)
{
Py_ssize_t i;
PyObject_GC_UnTrack(op);
Py_TRASHCAN_BEGIN(op, list_dealloc)
if (op->ob_item != NULL) {
/* Do it backwards, for Christian Tismer.
There's a simple test case where somehow this reduces
thrashing when a *very* large list is created and
immediately deleted. */
i = Py_SIZE(op);
while (--i >= 0) {
Py_XDECREF(op->ob_item[i]);
}
free_list_array(op->ob_item, false);
}
#if PyList_MAXFREELIST > 0
struct _Py_list_state *state = get_list_state();
#ifdef Py_DEBUG
// list_dealloc() must not be called after _PyList_Fini()
assert(state->numfree != -1);
#endif
if (state->numfree < PyList_MAXFREELIST && PyList_CheckExact(op)) {
state->free_list[state->numfree++] = op;
OBJECT_STAT_INC(to_freelist);
}
else
#endif
{
Py_TYPE(op)->tp_free((PyObject *)op);
}
Py_TRASHCAN_END
}
static PyObject *
list_repr_locked(PyListObject *v)
{
Py_ssize_t i;
PyObject *s;
_PyUnicodeWriter writer;
i = Py_ReprEnter((PyObject*)v);
if (i != 0) {
return i > 0 ? PyUnicode_FromString("[...]") : NULL;
}
_PyUnicodeWriter_Init(&writer);
writer.overallocate = 1;
/* "[" + "1" + ", 2" * (len - 1) + "]" */
writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1;
if (_PyUnicodeWriter_WriteChar(&writer, '[') < 0)
goto error;
/* Do repr() on each element. Note that this may mutate the list,
so must refetch the list size on each iteration. */
for (i = 0; i < Py_SIZE(v); ++i) {
if (i > 0) {
if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
goto error;
}
s = PyObject_Repr(v->ob_item[i]);
if (s == NULL)
goto error;
if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) {
Py_DECREF(s);
goto error;
}
Py_DECREF(s);
}
writer.overallocate = 0;
if (_PyUnicodeWriter_WriteChar(&writer, ']') < 0)
goto error;
Py_ReprLeave((PyObject *)v);
return _PyUnicodeWriter_Finish(&writer);
error:
_PyUnicodeWriter_Dealloc(&writer);
Py_ReprLeave((PyObject *)v);
return NULL;
}
static PyObject *
list_repr(PyListObject *v)
{
if (Py_SIZE(v) == 0) {
return PyUnicode_FromString("[]");
}
PyObject *ret;
Py_BEGIN_CRITICAL_SECTION(v);
ret = list_repr_locked(v);
Py_END_CRITICAL_SECTION;
return ret;
}
static Py_ssize_t
list_length(PyListObject *a)
{
return _Py_atomic_load_ssize_relaxed(&((PyVarObject *)a)->ob_size);
}
static int
list_contains(PyListObject *a, PyObject *el)
{
for (Py_ssize_t i = 0; ; i++) {
PyObject *item = list_fetch_item(a, i);
if (!item) {
// out-of-bounds
return 0;
}
int cmp = PyObject_RichCompareBool(item, el, Py_EQ);
Py_DECREF(item);
if (cmp != 0) {
return cmp;
}
}
}
static Py_ssize_t
clamp_indices(Py_ssize_t size, Py_ssize_t *start, Py_ssize_t *stop)
{
if (*start < 0) {
*start = 0;
}
else if (*start > size) {
*start = size;
}
if (*stop < *start) {
*stop = *start;
}
else if (*stop > size) {
*stop = size;
}
return *stop - *start;
}
static PyObject *
list_slice_locked(PyListObject *a, Py_ssize_t start, Py_ssize_t len)
{
PyListObject *np = list_new(len);
if (np == NULL) {
return NULL;
}
PyObject **src = a->ob_item + start;
PyObject **dest = np->ob_item;
for (Py_ssize_t i = 0; i < len; i++) {
PyObject *v = src[i];
_Py_atomic_store_ptr_relaxed(&dest[i], Py_NewRef(v));
}
return (PyObject *)np;
}
static PyObject *
list_slice_step_locked(PyListObject *a, Py_ssize_t start, Py_ssize_t step,
Py_ssize_t len)
{
PyListObject *np = list_new(len);
if (np == NULL) {
return NULL;
}
size_t cur;
Py_ssize_t i;
PyObject **src = a->ob_item;
PyObject **dest = np->ob_item;
for (cur = start, i = 0; i < len;
cur += (size_t)step, i++) {
PyObject *v = src[cur];
_Py_atomic_store_ptr_relaxed(&dest[i], Py_NewRef(v));
}
return (PyObject *)np;
}
static PyObject *
list_slice_clamp(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
{
PyObject *res;
Py_BEGIN_CRITICAL_SECTION(a);
Py_ssize_t len = clamp_indices(Py_SIZE(a), &ilow, &ihigh);
res = list_slice_locked(a, ilow, len);
Py_END_CRITICAL_SECTION;
return res;
}
PyObject *
PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
{
if (!PyList_Check(a)) {
PyErr_BadInternalCall();
return NULL;
}
return list_slice_clamp((PyListObject *)a, ilow, ihigh);
}
static PyObject *
list_concat_locked(PyListObject *a, PyListObject *b)
{
Py_ssize_t size;
Py_ssize_t i;
PyObject **src, **dest;
PyListObject *np;
assert((size_t)Py_SIZE(a) + (size_t)Py_SIZE(b) < PY_SSIZE_T_MAX);
size = Py_SIZE(a) + Py_SIZE(b);
if (size == 0) {
return PyList_New(0);
}
np = (PyListObject *) list_new(size);
if (np == NULL) {
return NULL;
}
src = a->ob_item;
dest = np->ob_item;
for (i = 0; i < Py_SIZE(a); i++) {
PyObject *v = src[i];
_Py_atomic_store_ptr_relaxed(&dest[i], Py_NewRef(v));
}
src = b->ob_item;
dest = np->ob_item + Py_SIZE(a);
for (i = 0; i < Py_SIZE(b); i++) {
PyObject *v = src[i];
_Py_atomic_store_ptr_relaxed(&dest[i], Py_NewRef(v));
}
Py_SET_SIZE(np, size);
return (PyObject *)np;
}
static PyObject *
list_concat(PyListObject *a, PyObject *bb)
{
if (!PyList_Check(bb)) {
PyErr_Format(PyExc_TypeError,
"can only concatenate list (not \"%.200s\") to list",
Py_TYPE(bb)->tp_name);
return NULL;
}
PyObject *ret;
PyListObject *b = (PyListObject *)bb;
Py_BEGIN_CRITICAL_SECTION2(a, b);
ret = list_concat_locked(a, b);
Py_END_CRITICAL_SECTION2;
return ret;
}
static PyObject *
list_repeat_locked(PyListObject *a, Py_ssize_t n)
{
const Py_ssize_t input_size = Py_SIZE(a);
if (input_size == 0 || n <= 0)
return PyList_New(0);
assert(n > 0);
if (input_size > PY_SSIZE_T_MAX / n)
return PyErr_NoMemory();
Py_ssize_t output_size = input_size * n;
PyListObject *np = (PyListObject *) list_new(output_size);
if (np == NULL)
return NULL;
PyObject **dest = np->ob_item;
if (input_size == 1) {
PyObject *elem = a->ob_item[0];
_Py_RefcntAdd(elem, n);
PyObject **dest_end = dest + output_size;
while (dest < dest_end) {
_Py_atomic_store_ptr_relaxed(dest++, elem);
}
}
else {
PyObject **src = a->ob_item;
PyObject **src_end = src + input_size;
while (src < src_end) {
_Py_RefcntAdd(*src, n);
_Py_atomic_store_ptr_relaxed(dest++, *src++);
}
_Py_memory_repeat((char *)np->ob_item, sizeof(PyObject *)*output_size,
sizeof(PyObject *)*input_size);
}
PyList_SetSize(np, output_size);
return (PyObject *) np;
}
static PyObject *
list_repeat(PyListObject *a, Py_ssize_t n)
{
PyObject *ret;
Py_BEGIN_CRITICAL_SECTION(a);
ret = list_repeat_locked(a, n);
Py_END_CRITICAL_SECTION;
return ret;
}
static void
_list_clear_impl(PyListObject *a, bool is_resize)
{
Py_ssize_t i;
PyObject **item = a->ob_item;
if (item != NULL) {
/* Because XDECREF can recursively invoke operations on
this list, we make it empty first. */
i = Py_SIZE(a);
PyList_SetSize(a, 0);
_Py_atomic_store_ptr_release(&a->ob_item, NULL);
a->allocated = 0;
while (--i >= 0) {
Py_XDECREF(item[i]);
}
free_list_array(item, is_resize && _PyObject_GC_IS_SHARED(a));
}
/* Note that there is no guarantee that the list is actually empty
at this point, because XDECREF may have populated it again! */
}
static void
_list_clear(PyListObject *a)
{
_list_clear_impl(a, true);
}
static int
list_tp_clear(PyListObject *a)
{
_list_clear_impl(a, false);
return 0;
}
enum {
CLAMP_INDICES,
WRAP_INDICES
};
static Py_ssize_t
adjust_indices(Py_ssize_t size, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t step, int wrap_mode)
{
if (wrap_mode == CLAMP_INDICES) {
assert(step == 1);
return clamp_indices(size, start, stop);
}
else {
Py_ssize_t slicelength = PySlice_AdjustIndices(size, start, stop, step);
if ((step < 0 && *start < *stop) ||
(step > 0 && *start > *stop)) {
*stop = *start;
}
return slicelength;
}
}
static int
list_ass_slice_locked(PyListObject *a, Py_ssize_t start, Py_ssize_t stop, Py_ssize_t step, int wrap_mode,
PyObject *v, PyObject **seqitems, Py_ssize_t n)
{
Py_ssize_t size = Py_SIZE(a);
Py_ssize_t slicelength = adjust_indices(size, &start, &stop, step, wrap_mode);
if (step != 1 && v && n != slicelength) {
PyErr_Format(PyExc_ValueError,
"attempt to assign sequence of "
"size %zd to extended slice of "
"size %zd", n, slicelength);
return -1;
}
/* Change in size */
Py_ssize_t d = n - slicelength;
if (d > 0 && list_ensure_capacity(a, size, d) < 0) {
return -1;
}
/* recycle the items that we are about to remove */
PyObject *recycle_on_stack[8];
PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
size_t s = slicelength * sizeof(PyObject *);
if (s > sizeof(recycle_on_stack)) {
recycle = (PyObject **)PyMem_MALLOC(s);
if (recycle == NULL) {
PyErr_NoMemory();
return -1;
}
}
PyObject **item = a->ob_item;
if (d == 0) {
for (Py_ssize_t k = 0, i = start; k < n; k++, i+=step) {
PyObject *w = seqitems[k];
Py_XINCREF(w);
recycle[k] = item[i];
item[i] = w; // todo: relaxed store
}
}
else if (step == 1) {
for (Py_ssize_t k = 0, i = start; k < slicelength; k++, i+=step) {
recycle[k] = item[i];
}
if (d != 0) {
Py_ssize_t tail = (size - stop) * sizeof(PyObject *);
memmove(&item[stop+d], &item[stop], tail);
}
for (Py_ssize_t k = 0, i = start; k < n; k++, i+=step) {
PyObject *w = seqitems[k];
Py_XINCREF(w);
item[i] = w;
}
}
else {
assert(d < 0);
if (step < 0) {
stop = start + 1;
start = stop + step*(slicelength - 1) - 1;
step = -step;
}
/* drawing pictures might help understand these for
loops. Basically, we memmove the parts of the
list that are *not* part of the slice: step-1
items for each item that is part of the slice,
and then tail end of the list that was not
covered by the slice */
size_t cur, i;
for (cur = start, i = 0;
cur < (size_t)stop;
cur += step, i++) {
Py_ssize_t lim = step - 1;
recycle[i] = item[cur];
if (cur + step >= (size_t)size) {
lim = size - cur - 1;
}
memmove(item + cur - i,
item + cur + 1,
lim * sizeof(PyObject *));
}
cur = start + (size_t)slicelength * step;
if (cur < (size_t)size) {
memmove(item + cur - slicelength,
item + cur,
(size - cur) *
sizeof(PyObject *));
}
}
Py_SET_SIZE(a, size + d);
for (Py_ssize_t k = slicelength - 1; k >= 0; --k) {
Py_XDECREF(recycle[k]);
}
if (recycle != recycle_on_stack) {
PyMem_FREE(recycle);
}
return 0;
}
static int
list_ass_slice(PyListObject *a, Py_ssize_t start, Py_ssize_t stop, Py_ssize_t step, int wrap_mode, PyObject *v)
{
/* protect against a[::-1] = a */
int ret;
if (a == (PyListObject*)v) {
Py_BEGIN_CRITICAL_SECTION(a);