forked from mit-han-lab/smoothquant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_int8_model.py
56 lines (47 loc) · 2.69 KB
/
export_int8_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import argparse
import os
from pathlib import Path
from transformers.models.opt.modeling_opt import OPTForCausalLM
from transformers import AutoTokenizer
from smoothquant.opt import Int8OPTForCausalLM
from smoothquant.smooth import smooth_lm
from smoothquant.calibration import get_static_decoder_layer_scales
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default='facebook/opt-13b')
parser.add_argument("--num-samples", type=int, default=512)
parser.add_argument("--seq-len", type=int, default=512)
parser.add_argument("--act-scales", type=str,
default='act_scales/opt-13b.pt')
parser.add_argument("--output-path", type=str, default='int8_models')
parser.add_argument('--dataset-path', type=str, default='dataset/val.jsonl.zst',
help='location of the calibration dataset, we use the validation set of the Pile dataset')
parser.add_argument('--export-FT', default=False, action="store_true")
args = parser.parse_args()
model = OPTForCausalLM.from_pretrained(
args.model_name, device_map="auto", torch_dtype=torch.float16)
act_scales = torch.load(args.act_scales)
smooth_lm(model, act_scales, 0.5)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
if not os.path.exists(args.dataset_path):
print(f'Cannot find the dataset at {args.dataset_path}')
print('Please download the Pile dataset and put the validation set at the path')
print('You can download the validation dataset of the Pile at https://mystic.the-eye.eu/public/AI/pile/val.jsonl.zst')
raise FileNotFoundError
decoder_layer_scales, raw_scales = get_static_decoder_layer_scales(model,
tokenizer,
args.dataset_path,
num_samples=args.num_samples,
seq_len=args.seq_len)
output_path = Path(args.output_path) / (Path(args.model_name).name + "-smoothquant.pt")
if args.export_FT:
model.save_pretrained(output_path)
print(f"Saved smoothed model at {output_path}")
output_path = Path(args.output_path) / (Path(args.model_name).name + "-smoothquant-scales.pt")
torch.save(raw_scales, output_path)
print(f"Saved scaling factors at {output_path}")
else:
int8_model = Int8OPTForCausalLM.from_float(model, decoder_layer_scales)
int8_model.save_pretrained(output_path)
print(f"Saved int8 model at {output_path}")