-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_tf_data.py
53 lines (45 loc) · 1.86 KB
/
extract_tf_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
import os
import argparse
import numpy as np
import sys, os
import matplotlib.pyplot as plt
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-i', type=os.path.abspath, default='DREAM5_PDB_Data_TrainingSet.txt',
help='Input DREAM5 training set file')
parser.add_argument('-tf', default='Cebpb', help='%(default)s')
parser.add_argument('--array-type', choices=('HK','ME'), nargs='+', default='all')
parser.add_argument('-o', help='Output file')
return parser
def quality_control(data):
'''Discard lines if flag != 0'''
lines = [x for x in data if x[-1].strip() == '0']
return lines
def extract_data(infile, tf, array_types, outfile):
with open(infile,'r') as f:
lines = []
for line in f.readlines():
if line.split('\t')[0] == tf:
lines.append(line)
lines = [x.split('\t') for x in lines]
if array_types != 'all':
lines = [x for x in lines if x[1] in array_types]
print('{} entries found for TF {}'.format(len(lines),tf))
lines = quality_control(lines)
print('{} entries remaining after QC'.format(len(lines)))
if os.path.exists(outfile):
print('WARNING: file {} already exists. overwriting'.format(outfile))
with open(outfile,'w') as f:
for line in lines:
#intensity = float(line[5])-float(line[6]) # median signal intensity - median background intensity
f.write('\t'.join([line[2][0:35],line[5], line[6]])) # seq, median signal, median background
f.write('\n')
print('Wrote {}'.format(outfile))
#x = np.array([float(line[5]) - float(line[6]) for line in lines])
#plt.plot(range(len(x)), x,'o')
#plt.show()
def main(args):
extract_data(args.i, args.tf, args.array_type, args.o)
if __name__ == '__main__':
main(parse_args().parse_args())