
1
Clang Randstruct Project

Functional Specification Standard

Project: Clang Randstruct
 Author(s): Tim Pugh

Date: Nov 30, 2018

2
Clang Randstruct Project

Contents

1. Introduction ... 3
1.1. Summary .. 3
1.2. Requirements ... 3

1.3. Numbers ... 3
1.4. Existing System .. 4
1.5. Terminology ... 4
1.6. References ... 4

2. Functional Description .. 4

3
Clang Randstruct Project

1. Introduction

1.1. Summary

randstruct is a GCC compiler plugin that was ported from grsecurity to
upstream. This randomizes the layout of manually/automatically selected C
structures. This makes flaw exploitation less deterministic, requiring
significantly more flaws before an attacker can detect and target the layout of
sensitive kernel structures in memory. Kees Cook, our sponsor, wants this
functionality to be made usable in Clang/LLVM.

1.2. Requirements

1. Full Randomization
a. All structures marked with "__randomize_layout" have their field

positions randomized, including bit fields.
i. Reproducible random number (same seed needs to be saved

as part of the build)
ii. Programs report field location manually (structure layout in gcc

happens before plugin invocation)

2. Performance-sensitive randomization (possible stretch)
 . Best-effort limit randomization to cache-line (64 byte) size regions, keep
 adjacent bit-fields together.

3. Automatic structure selection (possible stretch)
 . Find structures that should be automatically selected (for example, structures
 of entirely function pointers), disabled with "__no_randomize_layout".

4. Regression tests
 . Since the randomization must be stable from source-to-source, the
 randomization seed needs to be externally recorded (i.e. it is a build artifact).

Regression tests to check all the corner cases should be built and included in
 the implementation (i.e. hooked to the standard LLVM/Clang regression tests)

5. Publish this, regardless of upstream acceptance
6. Goal: upstream in LLVM/Clang (stretch)

Submit work upstream for review
Implement changes based on feedback
Repeat until accepted into LLVM/Clang upstream

7. Kees Cook -- possibly assist in finding right person to ask a question to
in the event of us getting blocked

1.3. Numbers

The number of users of the randomization feature in Clang is unknown at this
time and would be hard to estimate. Once implemented and approved by the
upstream developers, many people will have the code at their disposal. As
this is for an addition to a popular open source project, the number of users
stands to be from 0 to millions. The usage among the users who know of the
randomization mechanism, choose to use the randomization mechanism, and

4
Clang Randstruct Project

their daily usage is unknown.

Provided users do intend to use the randomization features, we will have a
method of turning on or off the feature for developers so that compilation
times are not slower. The expected randomization is expected to incur a
minimal overhead cost on small projects, and on larger ones it may prove
large.

1.4. Existing System

Currently there is no system we are intending to replace, so much as
providing an alternative too. The GNU Compiler Collection (GCC) is the
alternative open source compiler that currently has a randomization feature
implemented within it. The author of that system is our product stakeholder
who is scheduled to receive the product of our implementation into Clang,
Kees Cook.

1.5. Terminology

Clang – Compiler Front End for LLVM

GCC – The GNU Compiler Collection, C compiler sponsored by GNU

GNU – GNU not Unix

Randstruct – Randomization of struct fields, project name

Upstream – The “headwaters” of any forked project

Compiler – A program that takes source code and translates it to a target
 language

1.6. References

https://clang.llvm.org/docs/

https://clang.llvm.org/doxygen/

2. Functional Description

Use Cases
The Clang-Randstruct team will create a randomization mechanism to change
the fields in structs for the Clang compiler front end. After it is created

https://clang.llvm.org/docs/
https://clang.llvm.org/doxygen/

5
Clang Randstruct Project

developers will be able to use our mechanism by labelling structs with
"__randomize_layout” and have their field positions randomized, including bit fields.
This capability will be the base of other use cases, such as the performance mode
and auto selection.

User Community

The user community of our randomization feature within clang varies on a per
use case. The main consumers of our implementation are expected to be
within the information security community, systems engineers, compiler
engineers and others who need a hardening their software systems.

Error Handling

Errors in our system will be handled via extensive testing, debugging and
iterative patches to our software. As we are contributing to an open source
project with many people who may take an interest in what we are
implementing, it’s reasonable to believe any errors overlooked may be
captured and submitted to us via our software repository.

We will be leveraging Clangs own set of tools for testing our software as well
as static code analysers, checking for memory leaks, security analysers,
license analysers and using compilation flags to catch warnings.

Errors within our system must not take place or it may halt the compilation of
code and prevent acceptance upstream. This would not be acceptable, and
errors really cannot be allowed, although future development on languages
may cause errors in the future, in which case we fully expect the Clang
community to patch our work. Changes to the Clang compiler may also cause
errors, but this too would be outside our control and would be unforeseeable.

Security

Our project is intended to harden the security of other software. Possible
abuses to our system may be possible via a reverse engineering of the
randomization seed for a run of a user’s software. In the event someone
circumvents the system, a user would simply need to restart their system. The
likelihood of an abuse of our system is minimal due to needing to reverse the
clang code base which would not be trivial to accomplish.

6
Clang Randstruct Project

Help

Within the duration of the project, help will be provided when users request to
test the functionality. We will provide all documentation and source code and
will be using Doxygen to generate documentation for the code that is written.
This is standard of the clang community and we intend to fulfil this obligation
as we understand it to be a requirement for being accepted upstream.

As the project is limited in duration, most help through the 3rd week of March
ranges from none to extensive. At the very least, one software engineer will
remain within the community and be available to help with any issues that
may arise. All other issues may be directed to the clang developers who are
reachable via IRC, group mailing list, and email.

Interfaces

User

The use of our system will take place at the command line via switches to the
clang compiler.

Software

Software developers may mark their code for use within our system by
labelling their structs with "__randomize_layout”.

Boundary Conditions

Our software should not incur any boundary conditions due to the size of any
code going through the randomization process.

Constraints.

Technical constraints do exist in the development of the randomization
implementation. The domain knowledge for a compiler is large and will be
challenging to overcome.

Several unique constraints do exist for our project, namely getting it into
upstream may prove very difficult. This is outside of our control, but we intend
to fork from Clang in the event it isn’t so other developers can continue to
make additions as well as team members when our contract expires.

A scheduling constraint also exists where we are obligated to work on the
system only up until March 18th, 2019. After this time, we fully expect
contributors outside of our project to contribute as we will be publishing our
work to the open source and LLVM/Clang community and figuratively “putting

7
Clang Randstruct Project

the word out”. We intend to post to the developer mailing list, and
LLVMWeekly.com, a weekly newsletter for LLVM/Clang published weekly. We
also intend to continue our dialog with past contacts who have aided in
development.

Platforms
Tests will be conducted on x86 Linux platforms and if time allows tested on all
other platforms. In most instances, the platforms that clang supports now
should be supported by our system as well.

Internationalisation
No internationalization is expected in our software. The Doxygen
documentation will be available if accepted into upstream, in which case a
web browsers translation software will suffice as a stand-in. This is outside the
scope of our project.

Performance

Capacity: Our software should not incur any problems with capacity that don’t
already exist within Clang currently.

Response times: We will be implementing a performance sensitive
randomization concurrently. Further testing will be needed to see the
performance overhead our code pays to randomization with compiling the
code but will constant and only should be microseconds indifference from any
struct. A performance hit will be expected but should not differ from struct to
struct or will be inconsequential.

Portability
Although we may only be supporting one platform initially, we almost certainly
will want to be able to port developments to other platforms.

Expandability
Expandability may be carried out freely under our intended software license.
Anyone will be free to modify our code.

Customisation
No customization is necessary nor supported besides being able to seed the
randomization feature by the user.

Support & Maintenance
There will be tests implemented during development to ensure that the
randomization features are correct. These will be included if desired by the
upstream community but will be developed regardless of concurrently with the
system. Future maintenance by the team will be on a case by case basis but
generally deferred to the LLVM/Clang development community and repository
maintainers.

Configuration Management
Management of the system will be unique as our project will be implemented
onto a pre-existing open source project. We intend to license the software

8
Clang Randstruct Project

with the same license as LLVM/Clang so that users developing on Clang can
expect the same restrictions for modifying the code. All future configuration
will be at the will of the Clang developers and repository maintainers.

Documentation
We will be using the documentation generation tool Doxygen as this is what is
currently used by Clang. All documentation will be within the source code, and
if accepted to upstream, there should be a mechanism in place that will
publish the documentation online. We will be documenting all source material.

