Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Performance Issue: Slow read_csv() Function with pandas Version 1.3.4 for CSV Files #176

Open
TendouArisu opened this issue Feb 8, 2024 · 0 comments

Comments

@TendouArisu
Copy link

Issue Description:
Hello.
I have discovered a performance degradation in the read_csv function of pandas version 1.3.4 when handling CSV files with a large number of columns. This problem significantly increases the loading time from just a few seconds in the previous version 1.2.5 to several minutes, almost 60x diff. I found some discussions on GitHub related to this issue, including #44106 and #44192.
I found that archive/presentations/FAT_Star_Tutorial_Measuring_Unintended_Bias_in_Text_Classification_Models_with_Real_Data.ipynb and archive/unintended_ml_bias/Train_Toxicity_Model.ipynb both used the influenced api. There may be more files used the influenced api.

Steps to Reproduce:

I have created a small reproducible example to better illustrate this issue.

# v1.3.4
import os
import pandas
import numpy
import timeit

def generate_sample():
    if os.path.exists("test_small.csv.gz") == False:
        nb_col = 100000
        nb_row = 5
        feature_list = {'sample': ['s_' + str(i+1) for i in range(nb_row)]}
        for i in range(nb_col):
            feature_list.update({'feature_' + str(i+1): list(numpy.random.uniform(low=0, high=10, size=nb_row))})
        df = pandas.DataFrame(feature_list)
        df.to_csv("test_small.csv.gz", index=False, float_format="%.6f")

def load_csv_file():
    col_names = pandas.read_csv("test_small.csv.gz", low_memory=False, nrows=1).columns
    types_dict = {col: numpy.float32 for col in col_names}
    types_dict.update({'sample': str})
    feature_df = pandas.read_csv("test_small.csv.gz", index_col="sample", na_filter=False, dtype=types_dict, low_memory=False)
    print("loaded dataframe shape:", feature_df.shape)

generate_sample()
timeit.timeit(load_csv_file, number=1)

# results
loaded dataframe shape: (5, 100000)
120.37690759263933
# v1.3.5
import os
import pandas
import numpy
import timeit

def generate_sample():
    if os.path.exists("test_small.csv.gz") == False:
        nb_col = 100000
        nb_row = 5
        feature_list = {'sample': ['s_' + str(i+1) for i in range(nb_row)]}
        for i in range(nb_col):
            feature_list.update({'feature_' + str(i+1): list(numpy.random.uniform(low=0, high=10, size=nb_row))})
        df = pandas.DataFrame(feature_list)
        df.to_csv("test_small.csv.gz", index=False, float_format="%.6f")

def load_csv_file():
    col_names = pandas.read_csv("test_small.csv.gz", low_memory=False, nrows=1).columns
    types_dict = {col: numpy.float32 for col in col_names}
    types_dict.update({'sample': str})
    feature_df = pandas.read_csv("test_small.csv.gz", index_col="sample", na_filter=False, dtype=types_dict, low_memory=False)
    print("loaded dataframe shape:", feature_df.shape)


generate_sample()
timeit.timeit(load_csv_file, number=1)

# results
loaded dataframe shape: (5, 100000)
2.8567268839105964

Suggestion

I would recommend considering an upgrade to a different version of pandas >= 1.3.5 or exploring other solutions to optimize the performance of loading CSV files.
Any other workarounds or solutions would be greatly appreciated.
Thank you!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant