自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。原来的 kv 离线量化方式移除。
从直观上看,量化 kv 有利于增加 kv block 的数量。与 fp16 相比,int4/int8 kv 的 kv block 分别可以增加到 4 倍和 2 倍。这意味着,在相同的内存条件下,kv 量化后,系统能支撑的并发数可以大幅提升,从而最终提高吞吐量。
但是,通常,量化会伴随一定的模型精度损失。我们使用了 opencompass 评测了若干个模型在应用了 int4/int8 量化后的精度,int8 kv 精度几乎无损,int4 kv 略有损失。详细结果放在了精度评测章节中。大家可以参考,根据实际需求酌情选择。
LMDeploy kv 4/8 bit 量化和推理支持如下 NVIDIA 显卡型号:
- volta 架构(sm70): V100
- 图灵架构(sm75):20系列、T4
- 安培架构(sm80,sm86):30系列、A10、A16、A30、A100
- Ada Lovelace架构(sm89):40 系列
- Hopper 架构(sm90): H100, H200
总结来说,LMDeploy kv 量化具备以下优势:
- 量化不需要校准数据集
- 支持 volta 架构(sm70)及以上的所有显卡型号
- kv int8 量化精度几乎无损,kv int4 量化精度在可接受范围之内
- 推理高效,在 llama2-7b 上加入 int8/int4 kv 量化,RPS 相较于 fp16 分别提升近 30% 和 40%
接下来,我们以 internlm2-chat-7b 模型为例,介绍 kv 量化和推理的若干应用。而在此之前,请安装 lmdeploy
pip install lmdeploy
通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy
参数。
LMDeploy 规定 qant_policy=4
表示 kv int4 量化,quant_policy=8
表示 kv int8 量化。
from lmdeploy import pipeline, TurbomindEngineConfig
engine_config = TurbomindEngineConfig(quant_policy=8)
pipe = pipeline("internlm/internlm2_5-7b-chat", backend_config=engine_config)
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)
lmdeploy serve api_server internlm/internlm2_5-7b-chat --quant-policy 8
我们把 lmdeploy 的 kv 量化应用在若干 LLM 模型上,并使用 opencompass 评测推理精度,结果如下表所示:
- | - | - | llama2-7b-chat | - | - | internlm2-chat-7b | - | - | internlm2.5-chat-7b | - | - | qwen1.5-7b-chat | - | - |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dataset | version | metric | kv fp16 | kv int8 | kv int4 | kv fp16 | kv int8 | kv int4 | kv fp16 | kv int8 | kv int4 | fp16 | kv int8 | kv int4 |
ceval | - | naive_average | 28.42 | 27.96 | 27.58 | 60.45 | 60.88 | 60.28 | 78.06 | 77.87 | 77.05 | 70.56 | 70.49 | 68.62 |
mmlu | - | naive_average | 35.64 | 35.58 | 34.79 | 63.91 | 64 | 62.36 | 72.30 | 72.27 | 71.17 | 61.48 | 61.56 | 60.65 |
triviaqa | 2121ce | score | 56.09 | 56.13 | 53.71 | 58.73 | 58.7 | 58.18 | 65.09 | 64.87 | 63.28 | 44.62 | 44.77 | 44.04 |
gsm8k | 1d7fe4 | accuracy | 28.2 | 28.05 | 27.37 | 70.13 | 69.75 | 66.87 | 85.67 | 85.44 | 83.78 | 54.97 | 56.41 | 54.74 |
race-middle | 9a54b6 | accuracy | 41.57 | 41.78 | 41.23 | 88.93 | 88.93 | 88.93 | 92.76 | 92.83 | 92.55 | 87.33 | 87.26 | 86.28 |
race-high | 9a54b6 | accuracy | 39.65 | 39.77 | 40.77 | 85.33 | 85.31 | 84.62 | 90.51 | 90.42 | 90.42 | 82.53 | 82.59 | 82.02 |
具体的评测方式可以参考这份指南。评测时,请在config文件中,为推理引擎添加 quant_policy
参数。
model | kv type | test settings | RPS | v.s. kv fp16 |
---|---|---|---|---|
llama2-chat-7b | fp16 | tp1 / ratio 0.8 / bs 256 / prompts 10000 | 14.98 | 1.0 |
- | int8 | tp1 / ratio 0.8 / bs 256 / prompts 10000 | 19.01 | 1.27 |
- | int4 | tp1 / ratio 0.8 / bs 256 / prompts 10000 | 20.81 | 1.39 |
llama2-chat-13b | fp16 | tp1 / ratio 0.9 / bs 128 / prompts 10000 | 8.55 | 1.0 |
- | int8 | tp1 / ratio 0.9 / bs 256 / prompts 10000 | 10.96 | 1.28 |
- | int4 | tp1 / ratio 0.9 / bs 256 / prompts 10000 | 11.91 | 1.39 |
internlm2-chat-7b | fp16 | tp1 / ratio 0.8 / bs 256 / prompts 10000 | 24.13 | 1.0 |
- | int8 | tp1 / ratio 0.8 / bs 256 / prompts 10000 | 25.28 | 1.05 |
- | int4 | tp1 / ratio 0.8 / bs 256 / prompts 10000 | 25.80 | 1.07 |
上述结果使用的测试脚本是 benchmark/profile_throughput.py