-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathProject ideas.lyx
401 lines (331 loc) · 9.39 KB
/
Project ideas.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
\allowdisplaybreaks
\DeclareMathOperator{\E}{E}
\DeclareMathOperator{\Var}{Var}
\DeclareMathOperator{\Cov}{Cov}
\DeclareMathOperator{\dif}{d}
\DeclareMathOperator*{\argmin}{arg\,min}
\DeclareMathOperator{\tr}{tr}
\usepackage{algpseudocode}
\end_preamble
\use_default_options true
\begin_modules
knitr
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1in
\topmargin 1in
\rightmargin 1in
\bottommargin 1in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Sparse Dictionary Learning
\begin_inset Newline newline
\end_inset
Project ideas
\end_layout
\begin_layout Author
Grazzini, Miller, Wilson
\end_layout
\begin_layout Section
Overall project structure
\end_layout
\begin_layout Standard
3-4 pages consists of review of the literature, with key algorithms and
results, e.g., convexity, discussed or shown as applicable.
1-2 pages with application to specific data set, presentation of results.
Consider adapting published code.
\end_layout
\begin_layout Section
Literature review
\end_layout
\begin_layout Standard
While off-the-shelf dictionaries, e.g., the Haar wavelet basis, can give acceptabl
e performance in representing a signal
\begin_inset Formula $\mathbf{x}$
\end_inset
, they are not adapted to the particular
\begin_inset Formula $\mathbf{x}$
\end_inset
at hand, which suggests that a dictionary learned from the signal itself
could give better performance.
\end_layout
\begin_layout Subsection
\begin_inset CommandInset citation
LatexCommand cite
key "key-1"
\end_inset
\end_layout
\begin_layout Standard
Sparse models are well adapted to natural signals, and do not require that
the basis vectors be orthogonal.
A signal
\begin_inset Formula $\mathbf{x}\in\mathbb{R}^{m}$
\end_inset
admits a sparse approximation over a
\emph on
dictionary
\emph default
\begin_inset Formula $\mathbf{D}\in\mathbf{M}_{m,k}\left(\mathbb{R}\right)$
\end_inset
, with
\begin_inset Formula $k$
\end_inset
columns referred to as
\emph on
atoms
\emph default
, when one can find a linear combination of a
\begin_inset Quotes eld
\end_inset
few
\begin_inset Quotes erd
\end_inset
atoms from
\begin_inset Formula $\mathbf{D}$
\end_inset
that is
\begin_inset Quotes eld
\end_inset
close
\begin_inset Quotes erd
\end_inset
to
\begin_inset Formula $\mathbf{x}$
\end_inset
.
Many (recent) algorithms for dictionary learning are iterative
\emph on
batch
\emph default
procedures, accessing the whole training set at each iteration in order
to minimize a cost function under some constraints.
Such methods are not well suited to very large training sets, or to dynamic
training data changing over time.
\end_layout
\begin_layout Standard
An
\emph on
online
\emph default
approach processes one element (or a small subset) of the training set
at a time.
This approach involves optimization of a smooth nonconvex function over
a convex set, minimizing the
\emph on
expected
\emph default
cost when the training set size goes to infinity.
This optimization is efficiently solved by minimizing at each step a quadratic
surrogate function of the empirical cost over a set of constraints.
The resulting approach is shown to offer significant performance improvement
over previous approaches to dictionary learning.
\end_layout
\begin_layout Standard
In particular, we wish to minimize the expected cost
\begin_inset Formula
\[
f\left(\mathbf{D}\right)\coloneqq\E_{\mathbf{x}}\left[l\left(\mathbf{x},\mathbf{D}\right)\right]=\lim_{n\rightarrow\infty}f_{n}\left(\mathbf{D}\right)\text{ a.s.},
\]
\end_inset
where
\begin_inset Formula
\[
f_{n}\left(\mathbf{D}\right)\coloneqq\frac{1}{n}\sum_{i=1}^{n}l\left(\mathbf{x}^{\left(i\right)},\mathbf{D}\right)
\]
\end_inset
is the empirical cost function,
\begin_inset Formula
\[
l\left(\mathbf{x},\mathbf{D}\right)\coloneqq\min_{\boldsymbol{\alpha}\in\mathbb{R}^{k}}\frac{1}{2}\left\Vert \mathbf{x}-\mathbf{D}\boldsymbol{\alpha}\right\Vert _{2}^{2}+\lambda\left\Vert \boldsymbol{\alpha}\right\Vert _{1}
\]
\end_inset
is the optimal value of the
\begin_inset Formula $\ell_{1}$
\end_inset
\emph on
-sparse coding problem
\emph default
, and
\begin_inset Formula $\lambda$
\end_inset
is a regularization parameter.
\end_layout
\begin_layout Section
Application ideas
\end_layout
\begin_layout Subsection
Anomaly detection in audio files
\end_layout
\begin_layout Standard
Start with a dictionary
\begin_inset Formula $\mathbf{D}_{0}$
\end_inset
, e.g., Fourier basis, or possibly learn a dictionary from the first
\begin_inset Formula $n_{0}$
\end_inset
samples of the audio file, then use sparse learning to update the dictionary
online, i.e., as we process each successive sample (possibly extending the
"mini-batch" idea of
\begin_inset CommandInset citation
LatexCommand cite
key "key-1"
\end_inset
, similar to a sliding window in the STFT).
Then use the method proposed by
\begin_inset CommandInset citation
LatexCommand cite
key "key-2"
\end_inset
to detect "anomalous" events in the song, e.g., the single high F in the
"Star Spangled Banner," a key change in a song, the "bridge" in many rock
and pop songs, etc.
Consider testing on a song with "concept drift," e.g., "Bohemian Rhapsody."
Also applications to compressibility, e.g., could a dictionary learned from
one song on an album be used to compress the remaining songs on the album,
where we implicitly assume that songs on the same album share a dictionary.
Could the algorithm detect which songs became hits (anomalies)? Application,
let's say, to
\emph on
Jagged Little Pill
\emph default
(though basically every song was a hit, just an idea).
\end_layout
\begin_layout Subsection
Implementation
\end_layout
\begin_layout Standard
We will implement using the SPArse Modeling Software (SPAMS) package of
Mairal et al.
\end_layout
\begin_layout Subsection
Inpainting
\end_layout
\begin_layout Standard
In image or audio context, can we remove noise/defacement (as in the text
in the bird image) using this technique, how does it compare to other technique
s.
\end_layout
\begin_layout Subsection
DNA
\end_layout
\begin_layout Standard
Possible application to aligning reads, detecting mutations (anomalies)
without a reference genome.
\end_layout
\begin_layout Subsection
Text
\end_layout
\begin_layout Standard
Can the approach be used on a "stream" of words to learn a dictionary that
enables superior compressibility or, more interestingly, anomaly detection,
where anomalies are viewed as the beginning of a new chapter, a lengthy
monologue, sections of dialog vs descriptive text, etc.
Possible application to plagiarism detection.
Consider texts available from Project Gutenberg.
\end_layout
\begin_layout Bibliography
\begin_inset CommandInset bibitem
LatexCommand bibitem
label "Ma09"
key "key-1"
\end_inset
Mairal, J., Bach, F., Ponce, J., & Sapiro, G.
(2009).
Online dictionary learning for sparse coding.
In Proceedings of the 26th Annual International Conference on Machine Learning
- ICML ’09 (pp.
689–696).
New York, New York, USA: ACM Press.
\begin_inset CommandInset href
LatexCommand href
target "http://doi.org/10.1145/1553374.1553463"
\end_inset
\end_layout
\begin_layout Bibliography
\begin_inset CommandInset bibitem
LatexCommand bibitem
label "Zh11"
key "key-2"
\end_inset
Zhao, B., Fei-Fei, L., & Xing, E.
P.
(2011).
Online detection of unusual events in videos via dynamic sparse coding.
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 3313–3320.
\begin_inset CommandInset href
LatexCommand href
target "http://doi.org/10.1109/CVPR.2011.5995524"
\end_inset
\end_layout
\end_body
\end_document