From c25a2184e72b0bc28f4ff8f8886cc01d6f7f5c5b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Eren=20G=C3=B6lge?= Date: Sat, 3 Jul 2021 13:55:27 +0200 Subject: [PATCH] Add docs for `SpeakerManager` --- TTS/tts/utils/speakers.py | 63 +++++++++++---------- docs/source/index.md | 1 + docs/source/main_classes/speaker_manager.md | 11 ++++ 3 files changed, 45 insertions(+), 30 deletions(-) create mode 100644 docs/source/main_classes/speaker_manager.md diff --git a/TTS/tts/utils/speakers.py b/TTS/tts/utils/speakers.py index 5caa2fee05..8febcbbfcc 100755 --- a/TTS/tts/utils/speakers.py +++ b/TTS/tts/utils/speakers.py @@ -13,33 +13,27 @@ class SpeakerManager: - """It manages the multi-speaker setup for 🐸TTS models. It loads the speaker files and parses the information - in a way that you can query. There are 3 different scenarios considered. - - 1. Models using speaker embedding layers. The metafile only includes a mapping of speaker names to ids. - 2. Models using external embedding vectors (x vectors). The metafile includes a dictionary in the following - format. - - ``` - { - 'clip_name.wav':{ - 'name': 'speakerA', - 'embedding'[] - }, - ... - } - ``` - - 3. Computing x vectors at inference with the speaker encoder. It loads the speaker encoder model and - computes x vectors for a given instance. - - >>> >>> # load audio processor and speaker encoder - >>> ap = AudioProcessor(**config.audio) - >>> manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) - >>> # load a sample audio and compute embedding - >>> waveform = ap.load_wav(sample_wav_path) - >>> mel = ap.melspectrogram(waveform) - >>> d_vector = manager.compute_d_vector(mel.T) + """Manage the speakers for multi-speaker 🐸TTS models. Load a datafile and parse the information + in a way that can be queried by speaker or clip. + + There are 3 different scenarios considered: + + 1. Models using speaker embedding layers. The datafile only maps speaker names to ids used by the embedding layer. + 2. Models using d-vectors. The datafile includes a dictionary in the following format. + + :: + + { + 'clip_name.wav':{ + 'name': 'speakerA', + 'embedding'[] + }, + ... + } + + + 3. Computing the d-vectors by the speaker encoder. It loads the speaker encoder model and + computes the d-vectors for a given clip or speaker. Args: d_vectors_file_path (str, optional): Path to the metafile including x vectors. Defaults to "". @@ -47,6 +41,15 @@ class SpeakerManager: TTS models. Defaults to "". encoder_model_path (str, optional): Path to the speaker encoder model file. Defaults to "". encoder_config_path (str, optional): Path to the spealer encoder config file. Defaults to "". + + Examples: + >>> # load audio processor and speaker encoder + >>> ap = AudioProcessor(**config.audio) + >>> manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) + >>> # load a sample audio and compute embedding + >>> waveform = ap.load_wav(sample_wav_path) + >>> mel = ap.melspectrogram(waveform) + >>> d_vector = manager.compute_d_vector(mel.T) """ def __init__( @@ -188,7 +191,7 @@ def get_mean_d_vector(self, speaker_idx: str, num_samples: int = None, randomize Args: speaker_idx (str): Target speaker ID. num_samples (int, optional): Number of samples to be averaged. Defaults to None. - randomize (bool, optional): Pick random `num_samples`of d_vectors. Defaults to False. + randomize (bool, optional): Pick random `num_samples` of d_vectors. Defaults to False. Returns: np.ndarray: Mean d_vector. @@ -311,7 +314,7 @@ def save_speaker_mapping(out_path, speaker_mapping): def get_speaker_manager(c: Coqpit, data: List = None, restore_path: str = None, out_path: str = None) -> SpeakerManager: - """Create a SpeakerManager instance based on provided configuration. + """Initiate a `SpeakerManager` instance by the provided config. Args: c (Coqpit): Model configuration. @@ -321,7 +324,7 @@ def get_speaker_manager(c: Coqpit, data: List = None, restore_path: str = None, out_path (str, optional): Save the generated speaker IDs to a output path. Defaults to None. Returns: - SpeakerManager: + SpeakerManager: initialized and ready to use instance. """ speaker_manager = SpeakerManager() if c.use_speaker_embedding: diff --git a/docs/source/index.md b/docs/source/index.md index ec32c3037c..001265fa8c 100644 --- a/docs/source/index.md +++ b/docs/source/index.md @@ -37,6 +37,7 @@ main_classes/model_api main_classes/dataset main_classes/gan + main_classes/speaker_manager .. toctree:: :maxdepth: 2 diff --git a/docs/source/main_classes/speaker_manager.md b/docs/source/main_classes/speaker_manager.md new file mode 100644 index 0000000000..ba4b55dc78 --- /dev/null +++ b/docs/source/main_classes/speaker_manager.md @@ -0,0 +1,11 @@ +# Speaker Manager API + +The {class}`TTS.tts.utils.speakers.SpeakerManager` organize speaker related data and information for 🐸TTS models. It is +especially useful for multi-speaker models. + + +## Speaker Manager +```{eval-rst} +.. automodule:: TTS.tts.utils.speakers + :members: +``` \ No newline at end of file