Skip to content

Commit

Permalink
REBASED: Transform Speaker Encoder in a Generic Encoder and Implement…
Browse files Browse the repository at this point in the history
… Emotion Encoder training support (#1349)

* Rename Speaker encoder module to encoder

* Add a generic emotion dataset formatter

* Transform the Speaker Encoder dataset to a generic dataset and create emotion encoder config

* Add class map in emotion config

* Add Base encoder config

* Add evaluation encoder script

* Fix the bug in plot_embeddings

* Enable Weight decay for encoder training

* Add argumnet to disable storage

* Add Perfect Sampler and remove storage

* Add evaluation during encoder training

* Fix lint checks

* Remove useless config parameter

* Active evaluation in speaker encoder test and use multispeaker dataset for this test

* Unit tests fixs

* Remove useless tests for speedup the aux_tests

* Use get_optimizer in Encoder

* Add BaseEncoder Class

* Fix the unitests

* Add Perfect Batch Sampler unit test

* Add compute encoder accuracy in a function
  • Loading branch information
Edresson authored Mar 11, 2022
1 parent 36e9ea2 commit f818924
Show file tree
Hide file tree
Showing 40 changed files with 971 additions and 2,800 deletions.
22 changes: 12 additions & 10 deletions TTS/bin/compute_embeddings.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,33 +42,35 @@
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
wav_files = meta_data_train + meta_data_eval

speaker_manager = SpeakerManager(
encoder_manager = SpeakerManager(
encoder_model_path=args.model_path,
encoder_config_path=args.config_path,
d_vectors_file_path=args.old_file,
use_cuda=args.use_cuda,
)

class_name_key = encoder_manager.speaker_encoder_config.class_name_key

# compute speaker embeddings
speaker_mapping = {}
for idx, wav_file in enumerate(tqdm(wav_files)):
if isinstance(wav_file, list):
speaker_name = wav_file[2]
wav_file = wav_file[1]
if isinstance(wav_file, dict):
class_name = wav_file[class_name_key]
wav_file = wav_file["audio_file"]
else:
speaker_name = None
class_name = None

wav_file_name = os.path.basename(wav_file)
if args.old_file is not None and wav_file_name in speaker_manager.clip_ids:
if args.old_file is not None and wav_file_name in encoder_manager.clip_ids:
# get the embedding from the old file
embedd = speaker_manager.get_d_vector_by_clip(wav_file_name)
embedd = encoder_manager.get_d_vector_by_clip(wav_file_name)
else:
# extract the embedding
embedd = speaker_manager.compute_d_vector_from_clip(wav_file)
embedd = encoder_manager.compute_d_vector_from_clip(wav_file)

# create speaker_mapping if target dataset is defined
speaker_mapping[wav_file_name] = {}
speaker_mapping[wav_file_name]["name"] = speaker_name
speaker_mapping[wav_file_name]["name"] = class_name
speaker_mapping[wav_file_name]["embedding"] = embedd

if speaker_mapping:
Expand All @@ -81,5 +83,5 @@
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)

# pylint: disable=W0212
speaker_manager._save_json(mapping_file_path, speaker_mapping)
encoder_manager._save_json(mapping_file_path, speaker_mapping)
print("Speaker embeddings saved at:", mapping_file_path)
88 changes: 88 additions & 0 deletions TTS/bin/eval_encoder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
import argparse
import torch
from argparse import RawTextHelpFormatter

from tqdm import tqdm

from TTS.config import load_config
from TTS.tts.datasets import load_tts_samples
from TTS.tts.utils.speakers import SpeakerManager

def compute_encoder_accuracy(dataset_items, encoder_manager):

class_name_key = encoder_manager.speaker_encoder_config.class_name_key
map_classid_to_classname = getattr(encoder_manager.speaker_encoder_config, 'map_classid_to_classname', None)

class_acc_dict = {}

# compute embeddings for all wav_files
for item in tqdm(dataset_items):
class_name = item[class_name_key]
wav_file = item["audio_file"]

# extract the embedding
embedd = encoder_manager.compute_d_vector_from_clip(wav_file)
if encoder_manager.speaker_encoder_criterion is not None and map_classid_to_classname is not None:
embedding = torch.FloatTensor(embedd).unsqueeze(0)
if encoder_manager.use_cuda:
embedding = embedding.cuda()

class_id = encoder_manager.speaker_encoder_criterion.softmax.inference(embedding).item()
predicted_label = map_classid_to_classname[str(class_id)]
else:
predicted_label = None

if class_name is not None and predicted_label is not None:
is_equal = int(class_name == predicted_label)
if class_name not in class_acc_dict:
class_acc_dict[class_name] = [is_equal]
else:
class_acc_dict[class_name].append(is_equal)
else:
raise RuntimeError("Error: class_name or/and predicted_label are None")

acc_avg = 0
for key, values in class_acc_dict.items():
acc = sum(values)/len(values)
print("Class", key, "Accuracy:", acc)
acc_avg += acc

print("Average Accuracy:", acc_avg/len(class_acc_dict))


if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""Compute the accuracy of the encoder.\n\n"""
"""
Example runs:
python TTS/bin/eval_encoder.py emotion_encoder_model.pth.tar emotion_encoder_config.json dataset_config.json
""",
formatter_class=RawTextHelpFormatter,
)
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
parser.add_argument(
"config_path",
type=str,
help="Path to model config file.",
)

parser.add_argument(
"config_dataset_path",
type=str,
help="Path to dataset config file.",
)
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)

args = parser.parse_args()

c_dataset = load_config(args.config_dataset_path)

meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
items = meta_data_train + meta_data_eval

enc_manager = SpeakerManager(
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
)

compute_encoder_accuracy(items, enc_manager)
Loading

0 comments on commit f818924

Please sign in to comment.