-
Notifications
You must be signed in to change notification settings - Fork 0
/
edgedetect.py
188 lines (148 loc) · 6.21 KB
/
edgedetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import math
import time
from builtins import int, len, range, list, float, sorted, max, min
# import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageDraw
import sys
import cv2
import imutils
# TODO: Fix this freaking virtual environment so we don't have
# a ton of import statements
# takes in input in the form of two corners of the bounding box
# across a diagonal from each other.
# returns a list of ints in the form of (x, y) of the midpoint
def midpoint(x1, y1, x2, y2):
return [int((x2 - x1)/2), int((y2 + y1)/2)]
# takes in input in the form of two corners of the bounding box
# across a diagonal from each other and the image file
# returns the image but cropped to the bounding boxes
def crop(x1, y1, x2, y2, image):
return image.crop((x1, y1, x2, y2))
def auto_canny(image, sigma=0.33):
# compute the median of the single channel pixel intensities
v = np.median(image)
# apply automatic Canny edge detection using the computed median
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
edged = cv2.Canny(image, lower, upper)
# return the edged image
return edged
# applies Gaussian blur and canny edge detection to the image
# parameters are the image file, the midpoint, and canny edge
# thresholds
def canny_edge(image_file, width, height):
src = cv2.cvtColor(image_file, cv2.IMREAD_GRAYSCALE)
# TODO: Like the threshold values for canny edge, we need
# to determine the kernel values for Gaussian blur
# apply Gaussian blur on src image
# TODO: Implement findContours to get the outline of the object:
# https://www.pyimagesearch.com/2014/04/21/building-pokedex-python-finding-game-boy-screen-step-4-6/
blurred = cv2.GaussianBlur(image_file, (5, 5), cv2.BORDER_DEFAULT)
# apply canny edge detection to the blurred image
edge = auto_canny(src)
x = edge.copy()
cnts = cv2.findContours(x, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
l, a, b = cv2.split(blurred)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
cl = clahe.apply(l)
# cv2.imshow('CLAHE output', cl)
# -----Merge the CLAHE enhanced L-channel with the a and b channel-----------
limg = cv2.merge((cl, a, b))
# cv2.imshow('limg', limg)
# -----Converting image from LAB Color model to RGB model--------------------
final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
# cv2.imshow('final', final)
edge = auto_canny(final)
x = edge.copy()
cv2.drawContours(x, cnts, -1, (255, 0, 0), 5)
# cv2.imshow("Contours", x)
# cv2.waitKey(0)
cnts = cv2.findContours(x, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10]
k = np.zeros(shape=[height, width, 3], dtype=np.uint8)
# print("Contours: ", cnts)
cv2.drawContours(k, [cnts[0]], -1, (255, 255, 255), 1)
# cv2.imshow("Contours", k)
# cv2.waitKey(0)
M = cv2.moments(cnts[0])
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
return k, [cX, cY]
def distance(x1, y1, x2, y2):
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
# uses the canny edge image and the midpoint to determine the two points
# that the robot arm needs to grab
def shortest_path(edge, mid_contour, w, h):
pix_val = []
half_cols = w//2
total_cols = w
total_rows = h
# range goes from halfway through the x direction and
# the whole way in the y direction
for i in range(half_cols):
for j in range(total_rows):
g = edge[j][i][1]
if g == 255:
pix_val.append([i, j])
min_distance = float("inf")
val_x1, val_y1, val_x2, val_y2 = -1, -1, -1, -1
for coor in pix_val:
col, row = coor[0], coor[1]
theta = math.atan2((mid_contour[0] - col), (mid_contour[1] - row))
for radius in range(int(min(total_rows, total_cols)/2)):
new_col = min(mid_contour[0] +
math.sin(theta)*radius, total_cols-1)
new_row = min(mid_contour[1] +
math.cos(theta)*radius, total_rows-1)
# print((new_col, new_row))
g = edge[int(new_row)][int(new_col)][1]
if g == 255:
dist = distance(new_col, new_row, col, row)
if dist < min_distance:
val_x1 = col
val_y1 = row
val_x2 = new_col
val_y2 = new_row
min_distance = dist
cv2.circle(edge, (int(val_x1), int(val_y1)), 5, (255, 0, 255), -1)
cv2.circle(edge, (int(val_x2), int(val_y2)), 5, (255, 0, 255), -1)
cv2.circle(edge, (int(mid_contour[0]), int(
mid_contour[1])), 5, (255, 0, 255), -1)
cv2.imshow("points", edge)
cv2.waitKey(0)
return "Shortest path: ", val_x1, val_y1, " to ", val_x2, val_y2, " Distance: ", min_distance
# assumes sys.argv[1] (first argument after the python script call)
# is a filename; otherwise has a default file
def main():
image_file = "IMG_1120.jpg"
if len(sys.argv) > 1:
image_file = sys.argv[1]
with Image.open(image_file) as image:
width, height = image.size
# TODO: Write code with the object detection script to return bounding box coordinates
# for now, just assume that the bounding box is the whole image, and no cropping is necessary.
original_img = Image.open(sys.argv[1])
print(type(original_img))
opencvimage = cv2.cvtColor(np.array(original_img), cv2.COLOR_RGB2BGR)
cv2.imshow("original image", opencvimage)
cv2.waitKey(0)
ceRet = canny_edge(opencvimage, width, height)
edge_image = ceRet[0]
cv2.imshow("edges", edge_image)
cv2.waitKey(0)
# time.sleep(5)
# original_img.close()
# edge_image = Image.open(edge_image)
# edge_image.show()
mid = midpoint(0, 0, width, height)
to_file = str(ceRet[1][0]/1000) + " " + str(ceRet[1][1]/1000) + " 0"
with open('/Volumes/alison\'s home/c1c0_arm/coordinates.txt', 'w+') as f:
f.write(to_file)
f.close()
print("Midpoint: ", to_file)
print(shortest_path(edge_image, ceRet[1], width, height))
cv2.destroyAllWindows()
main()