-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlikelihood_with_Fij.py
61 lines (54 loc) · 2.41 KB
/
likelihood_with_Fij.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from itertools import product
from math import factorial, log, exp, lgamma
def likelihood(Q, P, limit_zero=False):
shape = Q.flatten()
q_shape = np.shape(Q)
A = np.ones(shape=np.add(shape, 1), dtype=float) # create nd array initialised at one
grid = [range(i+1) for i in shape] # Create an array of specified dimension
for coordinate in product(*grid): # iterate over A
if sum(coordinate) > 0:
result = 0
mating_pattern = np.reshape(np.array(coordinate), q_shape)
x, y = (mating_pattern.sum(axis=1), mating_pattern.sum(axis=0)) # x = row sum, y = col sum
for i in range(len(x)):
for j in range(len(y)):
index = len(y)*i+j
if coordinate[index] > 0:
result += P[i, j]*x[i]*y[j]*A[coordinate[:index]+(coordinate[index]-1,)+coordinate[(index+1):]] # A[new tuple with same coordinates but -1 at position i] :
h = np.dot(x, np.dot(P, y))
if h == 0 and result == 0:
if limit_zero: # to compute likelihood when pref tend to zero (to consider virtual types)
A[coordinate] = 1
else:
A[coordinate] = 0 # to compute likelihood when pref really are zero
else:
A[coordinate] = result/h # result is divided by h
return A[tuple(shape)]
if __name__ == '__main__':
#import yappi
#yappi.start()
#import statprof
#statprof.start()
#try:
import time
start = time.time()
Q = np.array([[5, 4, 2], [3, 2, 1]], dtype=int)
P = np.array([[1.0, 0.8, 0.2], [0.5, 0.2, 0.7]], dtype=float)
#P = np.array([[1.0, 0.8, 0], [0.5, 0.2, 0]], dtype=float)
#Q = np.array([[0, 1, 0], [1, 0, 2]], dtype=int)
#P = np.array([[0.0, 0.0], [0.0, 0.0]], dtype=float)
#Q = np.array([[1, 1], [1, 1]], dtype=int)
#P = np.array([[1.0, 1.0, 0.01], [1.0, 1.0, 0.01], [0.001, 0.001, 0]], dtype=float)
#Q = np.array([[10, 10, 0], [10, 10, 0], [0, 0, 0]], dtype=int)
#P = np.array([[0.5, 0.6, 0.8], [0.7, 0.8, 0.9], [0.5, 0.4, 0.2]], dtype=float)
#Q = np.array([[20, 10, 10], [10, 20, 10], [1, 1, 1]], dtype=int)
print(likelihood(Q, P))
stop = time.time()
print("time = "+str(round(stop-start))+" sec")
'''
finally:
#yappi.get_func_stats().print_all()
statprof.stop()
statprof.display()
'''