-
Notifications
You must be signed in to change notification settings - Fork 17
/
model.py
99 lines (82 loc) · 3.54 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
def init_weight(m):
if isinstance(m, torch.nn.Linear):
torch.nn.init.xavier_normal_(m.weight)
if isinstance(m, torch.nn.BatchNorm2d):
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
elif isinstance(m, torch.nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
class Discriminator(torch.nn.Module):
def __init__(self, in_planes, n_layers=2, hidden=None):
super(Discriminator, self).__init__()
_hidden = in_planes if hidden is None else hidden
self.body = torch.nn.Sequential()
for i in range(n_layers - 1):
_in = in_planes if i == 0 else _hidden
_hidden = int(_hidden // 1.5) if hidden is None else hidden
self.body.add_module('block%d' % (i + 1),
torch.nn.Sequential(
torch.nn.Linear(_in, _hidden),
torch.nn.BatchNorm1d(_hidden),
torch.nn.LeakyReLU(0.2)
))
self.tail = torch.nn.Sequential(torch.nn.Linear(_hidden, 1, bias=False),
torch.nn.Sigmoid())
self.apply(init_weight)
def forward(self, x):
x = self.body(x)
x = self.tail(x)
return x
class Projection(torch.nn.Module):
def __init__(self, in_planes, out_planes=None, n_layers=1, layer_type=0):
super(Projection, self).__init__()
if out_planes is None:
out_planes = in_planes
self.layers = torch.nn.Sequential()
_in = None
_out = None
for i in range(n_layers):
_in = in_planes if i == 0 else _out
_out = out_planes
self.layers.add_module(f"{i}fc", torch.nn.Linear(_in, _out))
if i < n_layers - 1:
if layer_type > 1:
self.layers.add_module(f"{i}relu", torch.nn.LeakyReLU(.2))
self.apply(init_weight)
def forward(self, x):
x = self.layers(x)
return x
class PatchMaker:
def __init__(self, patchsize, top_k=0, stride=None):
self.patchsize = patchsize
self.stride = stride
self.top_k = top_k
def patchify(self, features, return_spatial_info=False):
"""Convert a tensor into a tensor of respective patches.
Args:
x: [torch.Tensor, bs x c x w x h]
Returns:
x: [torch.Tensor, bs * w//stride * h//stride, c, patchsize,
patchsize]
"""
padding = int((self.patchsize - 1) / 2)
unfolder = torch.nn.Unfold(kernel_size=self.patchsize, stride=self.stride, padding=padding, dilation=1)
unfolded_features = unfolder(features)
number_of_total_patches = []
for s in features.shape[-2:]:
n_patches = (s + 2 * padding - 1 * (self.patchsize - 1) - 1) / self.stride + 1
number_of_total_patches.append(int(n_patches))
unfolded_features = unfolded_features.reshape(
*features.shape[:2], self.patchsize, self.patchsize, -1
)
unfolded_features = unfolded_features.permute(0, 4, 1, 2, 3)
if return_spatial_info:
return unfolded_features, number_of_total_patches
return unfolded_features
def unpatch_scores(self, x, batchsize):
return x.reshape(batchsize, -1, *x.shape[1:])
def score(self, x):
x = x[:, :, 0]
x = torch.max(x, dim=1).values
return x