-
Notifications
You must be signed in to change notification settings - Fork 837
/
Copy pathir_Sharp.cpp
978 lines (903 loc) · 37 KB
/
ir_Sharp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
// Copyright 2009 Ken Shirriff
// Copyright 2017, 2019 David Conran
/// @file
/// @brief Support for Sharp protocols.
/// @see http://www.sbprojects.net/knowledge/ir/sharp.htm
/// @see http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
/// @see http://www.mwftr.com/ucF08/LEC14%20PIC%20IR.pdf
/// @see http://www.hifi-remote.com/johnsfine/DecodeIR.html#Sharp
/// @see GlobalCache's IR Control Tower data.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/638
/// @see https://github.com/ToniA/arduino-heatpumpir/blob/master/SharpHeatpumpIR.cpp
#include "ir_Sharp.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
// period time = 1/38000Hz = 26.316 microseconds.
const uint16_t kSharpTick = 26;
const uint16_t kSharpBitMarkTicks = 10;
const uint16_t kSharpBitMark = kSharpBitMarkTicks * kSharpTick;
const uint16_t kSharpOneSpaceTicks = 70;
const uint16_t kSharpOneSpace = kSharpOneSpaceTicks * kSharpTick;
const uint16_t kSharpZeroSpaceTicks = 30;
const uint16_t kSharpZeroSpace = kSharpZeroSpaceTicks * kSharpTick;
const uint16_t kSharpGapTicks = 1677;
const uint16_t kSharpGap = kSharpGapTicks * kSharpTick;
// Address(5) + Command(8) + Expansion(1) + Check(1)
const uint64_t kSharpToggleMask =
(static_cast<uint64_t>(1) << (kSharpBits - kSharpAddressBits)) - 1;
const uint64_t kSharpAddressMask = (static_cast<uint64_t>(1) <<
kSharpAddressBits) - 1;
const uint64_t kSharpCommandMask = (static_cast<uint64_t>(1) <<
kSharpCommandBits) - 1;
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addModelToString;
using irutils::addSwingVToString;
using irutils::addTempToString;
using irutils::addToggleToString;
using irutils::minsToString;
// Also used by Denon protocol
#if (SEND_SHARP || SEND_DENON)
/// Send a (raw) Sharp message
/// @note Status: STABLE / Working fine.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
/// @note his procedure handles the inversion of bits required per protocol.
/// The protocol spec says to send the LSB first, but legacy code & usage
/// has us sending the MSB first. Grrrr. Normal invocation of encodeSharp()
/// handles this for you, assuming you are using the correct/standard values.
/// e.g. sendSharpRaw(encodeSharp(address, command));
void IRsend::sendSharpRaw(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
uint64_t tempdata = data;
for (uint16_t i = 0; i <= repeat; i++) {
// Protocol demands that the data be sent twice; once normally,
// then with all but the address bits inverted.
// Note: Previously this used to be performed 3 times (normal, inverted,
// normal), however all data points to that being incorrect.
for (uint8_t n = 0; n < 2; n++) {
sendGeneric(0, 0, // No Header
kSharpBitMark, kSharpOneSpace, kSharpBitMark, kSharpZeroSpace,
kSharpBitMark, kSharpGap, tempdata, nbits, 38, true,
0, // Repeats are handled already.
33);
// Invert the data per protocol. This is always called twice, so it's
// returned to original upon exiting the inner loop.
tempdata ^= kSharpToggleMask;
}
}
}
/// Encode a (raw) Sharp message from it's components.
/// Status: STABLE / Works okay.
/// @param[in] address The value of the address to be sent.
/// @param[in] command The value of the address to be sent. (8 bits)
/// @param[in] expansion The value of the expansion bit to use.
/// (0 or 1, typically 1)
/// @param[in] check The value of the check bit to use. (0 or 1, typically 0)
/// @param[in] MSBfirst Flag indicating MSB first or LSB first order.
/// @return A uint32_t containing the raw Sharp message for `sendSharpRaw()`.
/// @note Assumes the standard Sharp bit sizes.
/// Historically sendSharp() sends address & command in
/// MSB first order. This is actually incorrect. It should be sent in LSB
/// order. The behaviour of sendSharp() hasn't been changed to maintain
/// backward compatibility.
uint32_t IRsend::encodeSharp(const uint16_t address, const uint16_t command,
const uint16_t expansion, const uint16_t check,
const bool MSBfirst) {
// Mask any unexpected bits.
uint16_t tempaddress = GETBITS16(address, 0, kSharpAddressBits);
uint16_t tempcommand = GETBITS16(command, 0, kSharpCommandBits);
uint16_t tempexpansion = GETBITS16(expansion, 0, 1);
uint16_t tempcheck = GETBITS16(check, 0, 1);
if (!MSBfirst) { // Correct bit order if needed.
tempaddress = reverseBits(tempaddress, kSharpAddressBits);
tempcommand = reverseBits(tempcommand, kSharpCommandBits);
}
// Concatenate all the bits.
return (tempaddress << (kSharpCommandBits + 2)) | (tempcommand << 2) |
(tempexpansion << 1) | tempcheck;
}
/// Send a Sharp message
/// Status: DEPRECATED / Previously working fine.
/// @deprecated Only use this if you are using legacy from the original
/// Arduino-IRremote library. 99% of the time, you will want to use
/// `sendSharpRaw()` instead
/// @param[in] address Address value to be sent.
/// @param[in] command Command value to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
/// @note This procedure has a non-standard invocation style compared to similar
/// sendProtocol() routines. This is due to legacy, compatibility, & historic
/// reasons. Normally the calling syntax version is like sendSharpRaw().
/// This procedure transmits the address & command in MSB first order, which is
/// incorrect. This behaviour is left as-is to maintain backward
/// compatibility with legacy code.
/// In short, you should use sendSharpRaw(), encodeSharp(), and the correct
/// values of address & command instead of using this, & the wrong values.
void IRsend::sendSharp(const uint16_t address, uint16_t const command,
const uint16_t nbits, const uint16_t repeat) {
sendSharpRaw(encodeSharp(address, command, 1, 0, true), nbits, repeat);
}
#endif // (SEND_SHARP || SEND_DENON)
// Used by decodeDenon too.
#if (DECODE_SHARP || DECODE_DENON)
/// Decode the supplied Sharp message.
/// Status: STABLE / Working fine.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @param[in] expansion Should we expect the expansion bit to be set.
/// Default is true.
/// @return True if it can decode it, false if it can't.
/// @note This procedure returns a value suitable for use in `sendSharpRaw()`.
/// @todo Need to ensure capture of the inverted message as it can
/// be missed due to the interrupt timeout used to detect an end of message.
/// Several compliance checks are disabled until that is resolved.
bool IRrecv::decodeSharp(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict,
const bool expansion) {
if (results->rawlen <= 2 * nbits + kFooter - 1 + offset)
return false; // Not enough entries to be a Sharp message.
// Compliance
if (strict) {
if (nbits != kSharpBits) return false; // Request is out of spec.
// DISABLED - See TODO
#ifdef UNIT_TEST
// An in spec message has the data sent normally, then inverted. So we
// expect twice as many entries than to just get the results.
if (results->rawlen <= (2 * (2 * nbits + kFooter)) - 1 + offset)
return false;
#endif
}
uint64_t data = 0;
// Match Data + Footer
uint16_t used;
used = matchGeneric(results->rawbuf + offset, &data,
results->rawlen - offset, nbits,
0, 0, // No Header
kSharpBitMark, kSharpOneSpace,
kSharpBitMark, kSharpZeroSpace,
kSharpBitMark, kSharpGap, true, 35);
if (!used) return false;
offset += used;
// Compliance
if (strict) {
// Check the state of the expansion bit is what we expect.
if ((data & 0b10) >> 1 != expansion) return false;
// The check bit should be cleared in a normal message.
if (data & 0b1) return false;
// DISABLED - See TODO
#ifdef UNIT_TEST
// Grab the second copy of the data (i.e. inverted)
uint64_t second_data = 0;
// Match Data + Footer
if (!matchGeneric(results->rawbuf + offset, &second_data,
results->rawlen - offset, nbits,
0, 0,
kSharpBitMark, kSharpOneSpace,
kSharpBitMark, kSharpZeroSpace,
kSharpBitMark, kSharpGap, true, 35)) return false;
// Check that second_data has been inverted correctly.
if (data != (second_data ^ kSharpToggleMask)) return false;
#endif // UNIT_TEST
}
// Success
results->decode_type = SHARP;
results->bits = nbits;
results->value = data;
// Address & command are actually transmitted in LSB first order.
results->address = reverseBits(data, nbits) & kSharpAddressMask;
results->command =
reverseBits((data >> 2) & kSharpCommandMask, kSharpCommandBits);
return true;
}
#endif // (DECODE_SHARP || DECODE_DENON)
#if SEND_SHARP_AC
/// Send a Sharp A/C message.
/// Status: Alpha / Untested.
/// @param[in] data The message to be sent.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/638
/// @see https://github.com/ToniA/arduino-heatpumpir/blob/master/SharpHeatpumpIR.cpp
void IRsend::sendSharpAc(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kSharpAcStateLength)
return; // Not enough bytes to send a proper message.
sendGeneric(kSharpAcHdrMark, kSharpAcHdrSpace,
kSharpAcBitMark, kSharpAcOneSpace,
kSharpAcBitMark, kSharpAcZeroSpace,
kSharpAcBitMark, kSharpAcGap,
data, nbytes, 38000, false, repeat, 50);
}
#endif // SEND_SHARP_AC
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRSharpAc::IRSharpAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Set up hardware to be able to send a message.
void IRSharpAc::begin(void) { _irsend.begin(); }
#if SEND_SHARP_AC
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRSharpAc::send(const uint16_t repeat) {
_irsend.sendSharpAc(getRaw(), kSharpAcStateLength, repeat);
}
#endif // SEND_SHARP_AC
/// Calculate the checksum for a given state.
/// @param[in] state The array to calc the checksum of.
/// @param[in] length The length/size of the array.
/// @return The calculated 4-bit checksum value.
uint8_t IRSharpAc::calcChecksum(uint8_t state[], const uint16_t length) {
uint8_t xorsum = xorBytes(state, length - 1);
xorsum ^= GETBITS8(state[length - 1], kLowNibble, kNibbleSize);
xorsum ^= GETBITS8(xorsum, kHighNibble, kNibbleSize);
return GETBITS8(xorsum, kLowNibble, kNibbleSize);
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The length/size of the array.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRSharpAc::validChecksum(uint8_t state[], const uint16_t length) {
return GETBITS8(state[length - 1], kHighNibble, kNibbleSize) ==
IRSharpAc::calcChecksum(state, length);
}
/// Calculate and set the checksum values for the internal state.
void IRSharpAc::checksum(void) {
_.Sum = calcChecksum(_.raw);
}
/// Reset the state of the remote to a known good state/sequence.
void IRSharpAc::stateReset(void) {
static const uint8_t reset[kSharpAcStateLength] = {
0xAA, 0x5A, 0xCF, 0x10, 0x00, 0x01, 0x00, 0x00, 0x08, 0x80, 0x00, 0xE0,
0x01};
std::memcpy(_.raw, reset, kSharpAcStateLength);
_temp = getTemp();
_mode = _.Mode;
_fan = _.Fan;
_model = getModel(true);
}
/// Get a PTR to the internal state/code for this protocol.
/// @return PTR to a code for this protocol based on the current internal state.
uint8_t *IRSharpAc::getRaw(void) {
checksum(); // Ensure correct settings before sending.
return _.raw;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] new_code A valid code for this protocol.
/// @param[in] length The length/size of the new_code array.
void IRSharpAc::setRaw(const uint8_t new_code[], const uint16_t length) {
std::memcpy(_.raw, new_code, std::min(length, kSharpAcStateLength));
_model = getModel(true);
}
/// Set the model of the A/C to emulate.
/// @param[in] model The enum of the appropriate model.
void IRSharpAc::setModel(const sharp_ac_remote_model_t model) {
switch (model) {
case sharp_ac_remote_model_t::A705:
case sharp_ac_remote_model_t::A903:
_model = model;
_.Model = true;
break;
default:
_model = sharp_ac_remote_model_t::A907;
_.Model = false;
}
_.Model2 = (_model != sharp_ac_remote_model_t::A907);
// Redo the operating mode as some models don't support all modes.
setMode(_.Mode);
}
/// Get/Detect the model of the A/C.
/// @param[in] raw Try to determine the model from the raw code only.
/// @return The enum of the compatible model.
sharp_ac_remote_model_t IRSharpAc::getModel(const bool raw) const {
if (raw) {
if (_.Model2) {
if (_.Model)
return sharp_ac_remote_model_t::A705;
else
return sharp_ac_remote_model_t::A903;
} else {
return sharp_ac_remote_model_t::A907;
}
}
return _model;
}
/// Set the value of the Power Special setting without any checks.
/// @param[in] value The value to set Power Special to.
inline void IRSharpAc::setPowerSpecial(const uint8_t value) {
_.PowerSpecial = value;
}
/// Get the value of the Power Special setting.
/// @return The setting's value.
uint8_t IRSharpAc::getPowerSpecial(void) const {
return _.PowerSpecial;
}
/// Clear the "special"/non-normal bits in the power section.
/// e.g. for normal/common command modes.
void IRSharpAc::clearPowerSpecial(void) {
setPowerSpecial(_.PowerSpecial & kSharpAcPowerOn);
}
/// Is one of the special power states in use?
/// @return true, it is. false, it isn't.
bool IRSharpAc::isPowerSpecial(void) const {
switch (_.PowerSpecial) {
case kSharpAcPowerSetSpecialOff:
case kSharpAcPowerSetSpecialOn:
case kSharpAcPowerTimerSetting: return true;
default: return false;
}
}
/// Set the requested power state of the A/C to on.
void IRSharpAc::on(void) { setPower(true); }
/// Set the requested power state of the A/C to off.
void IRSharpAc::off(void) { setPower(false); }
/// Change the power setting, including the previous power state.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @param[in] prev_on true, the setting is on. false, the setting is off.
void IRSharpAc::setPower(const bool on, const bool prev_on) {
setPowerSpecial(on ? (prev_on ? kSharpAcPowerOn : kSharpAcPowerOnFromOff)
: kSharpAcPowerOff);
// Power operations are incompatible with clean mode.
if (_.Clean) setClean(false);
_.Special = kSharpAcSpecialPower;
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRSharpAc::getPower(void) const {
switch (_.PowerSpecial) {
case kSharpAcPowerUnknown:
case kSharpAcPowerOff: return false;
default: return true; // Everything else is "probably" on.
}
}
/// Set the value of the Special (button/command?) setting.
/// @param[in] mode The value to set Special to.
void IRSharpAc::setSpecial(const uint8_t mode) {
switch (mode) {
case kSharpAcSpecialPower:
case kSharpAcSpecialTurbo:
case kSharpAcSpecialTempEcono:
case kSharpAcSpecialFan:
case kSharpAcSpecialSwing:
case kSharpAcSpecialTimer:
case kSharpAcSpecialTimerHalfHour:
_.Special = mode;
break;
default:
_.Special = kSharpAcSpecialPower;
}
}
/// Get the value of the Special (button/command?) setting.
/// @return The setting's value.
uint8_t IRSharpAc::getSpecial(void) const { return _.Special; }
/// Set the temperature.
/// @param[in] temp The temperature in degrees celsius.
/// @param[in] save Do we save this setting as a user set one?
void IRSharpAc::setTemp(const uint8_t temp, const bool save) {
switch (_.Mode) {
// Auto & Dry don't allow temp changes and have a special temp.
case kSharpAcAuto:
case kSharpAcDry:
_.raw[kSharpAcByteTemp] = 0;
return;
default:
switch (getModel()) {
case sharp_ac_remote_model_t::A705:
_.raw[kSharpAcByteTemp] = 0xD0;
break;
default:
_.raw[kSharpAcByteTemp] = 0xC0;
}
}
uint8_t degrees = std::max(temp, kSharpAcMinTemp);
degrees = std::min(degrees, kSharpAcMaxTemp);
if (save) _temp = degrees;
_.Temp = degrees - kSharpAcMinTemp;
_.Special = kSharpAcSpecialTempEcono;
clearPowerSpecial();
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRSharpAc::getTemp(void) const {
return _.Temp + kSharpAcMinTemp;
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRSharpAc::getMode(void) const {
return _.Mode;
}
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
/// @param[in] save Do we save this setting as a user set one?
void IRSharpAc::setMode(const uint8_t mode, const bool save) {
uint8_t realMode = mode;
if (mode == kSharpAcHeat) {
switch (getModel()) {
case sharp_ac_remote_model_t::A705:
case sharp_ac_remote_model_t::A903:
// These models have no heat mode, use Fan mode instead.
realMode = kSharpAcFan;
break;
default:
break;
}
}
switch (realMode) {
case kSharpAcAuto: // Also kSharpAcFan
case kSharpAcDry:
// When Dry or Auto, Fan always 2(Auto)
setFan(kSharpAcFanAuto, false);
// FALLTHRU
case kSharpAcCool:
case kSharpAcHeat:
_.Mode = realMode;
break;
default:
setFan(kSharpAcFanAuto, false);
_.Mode = kSharpAcAuto;
}
// Dry/Auto have no temp setting. This step will enforce it.
setTemp(_temp, false);
// Save the mode in case we need to revert to it. eg. Clean
if (save) _mode = _.Mode;
_.Special = kSharpAcSpecialPower;
clearPowerSpecial();
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
/// @param[in] save Do we save this setting as a user set one?
void IRSharpAc::setFan(const uint8_t speed, const bool save) {
switch (speed) {
case kSharpAcFanAuto:
case kSharpAcFanMin:
case kSharpAcFanMed:
case kSharpAcFanHigh:
case kSharpAcFanMax:
_.Fan = speed;
if (save) _fan = speed;
break;
default:
_.Fan = kSharpAcFanAuto;
_fan = kSharpAcFanAuto;
}
_.Special = kSharpAcSpecialFan;
clearPowerSpecial();
}
/// Get the current fan speed setting.
/// @return The current fan speed/mode.
uint8_t IRSharpAc::getFan(void) const {
return _.Fan;
}
/// Get the Turbo setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRSharpAc::getTurbo(void) const {
return (_.PowerSpecial == kSharpAcPowerSetSpecialOn) &&
(_.Special == kSharpAcSpecialTurbo);
}
/// Set the Turbo setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @note If you use this method, you will need to send it before making
/// other changes to the settings, as they may overwrite some of the bits
/// used by this setting.
void IRSharpAc::setTurbo(const bool on) {
if (on) setFan(kSharpAcFanMax);
setPowerSpecial(on ? kSharpAcPowerSetSpecialOn : kSharpAcPowerSetSpecialOff);
_.Special = kSharpAcSpecialTurbo;
}
/// Get the Vertical Swing setting of the A/C.
/// @return The position of the Vertical Swing setting.
uint8_t IRSharpAc::getSwingV(void) const { return _.Swing; }
/// Set the Vertical Swing setting of the A/C.
/// @note Some positions may not work on all models.
/// @param[in] position The desired position/setting.
/// @note `setSwingV(kSharpAcSwingVLowest)` will only allow the Lowest setting
/// in Heat mode, it will default to `kSharpAcSwingVLow` otherwise.
/// If you want to set this value in other modes e.g. Cool, you must
/// use `setSwingV`s optional `force` parameter.
/// @param[in] force Do we override the safety checks and just do it?
void IRSharpAc::setSwingV(const uint8_t position, const bool force) {
switch (position) {
case kSharpAcSwingVCoanda:
// Only allowed in Heat mode.
if (!force && getMode() != kSharpAcHeat) {
setSwingV(kSharpAcSwingVLow); // Use the next lowest setting.
return;
}
// FALLTHRU
case kSharpAcSwingVHigh:
case kSharpAcSwingVMid:
case kSharpAcSwingVLow:
case kSharpAcSwingVToggle:
case kSharpAcSwingVOff:
case kSharpAcSwingVLast: // Technically valid, but we don't use it.
// All expected non-positions set the special bits.
_.Special = kSharpAcSpecialSwing;
// FALLTHRU
case kSharpAcSwingVIgnore:
_.Swing = position;
}
}
/// Convert a standard A/C vertical swing into its native setting.
/// @param[in] position A stdAc::swingv_t position to convert.
/// @return The equivalent native horizontal swing position.
uint8_t IRSharpAc::convertSwingV(const stdAc::swingv_t position) {
switch (position) {
case stdAc::swingv_t::kHighest:
case stdAc::swingv_t::kHigh: return kSharpAcSwingVHigh;
case stdAc::swingv_t::kMiddle: return kSharpAcSwingVMid;
case stdAc::swingv_t::kLow: return kSharpAcSwingVLow;
case stdAc::swingv_t::kLowest: return kSharpAcSwingVCoanda;
case stdAc::swingv_t::kAuto: return kSharpAcSwingVToggle;
case stdAc::swingv_t::kOff: return kSharpAcSwingVOff;
default: return kSharpAcSwingVIgnore;
}
}
/// Get the (vertical) Swing Toggle setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRSharpAc::getSwingToggle(void) const {
return getSwingV() == kSharpAcSwingVToggle;
}
/// Set the (vertical) Swing Toggle setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRSharpAc::setSwingToggle(const bool on) {
setSwingV(on ? kSharpAcSwingVToggle : kSharpAcSwingVIgnore);
if (on) _.Special = kSharpAcSpecialSwing;
}
/// Get the Ion (Filter) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRSharpAc::getIon(void) const { return _.Ion; }
/// Set the Ion (Filter) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRSharpAc::setIon(const bool on) {
_.Ion = on;
clearPowerSpecial();
if (on) _.Special = kSharpAcSpecialSwing;
}
/// Get the Economical mode toggle setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
/// @note Shares the same location as the Light setting on A705.
bool IRSharpAc::_getEconoToggle(void) const {
return (_.PowerSpecial == kSharpAcPowerSetSpecialOn) &&
(_.Special == kSharpAcSpecialTempEcono);
}
/// Set the Economical mode toggle setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @warning Probably incompatible with `setTurbo()`
/// @note Shares the same location as the Light setting on A705.
void IRSharpAc::_setEconoToggle(const bool on) {
if (on) _.Special = kSharpAcSpecialTempEcono;
setPowerSpecial(on ? kSharpAcPowerSetSpecialOn : kSharpAcPowerSetSpecialOff);
}
/// Set the Economical mode toggle setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @warning Probably incompatible with `setTurbo()`
/// @note Available on the A907 models.
void IRSharpAc::setEconoToggle(const bool on) {
if (_model == sharp_ac_remote_model_t::A907) _setEconoToggle(on);
}
/// Get the Economical mode toggle setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
/// @note Available on the A907 models.
bool IRSharpAc::getEconoToggle(void) const {
return _model == sharp_ac_remote_model_t::A907 && _getEconoToggle();
}
/// Set the Light mode toggle setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @warning Probably incompatible with `setTurbo()`
/// @note Not available on the A907 model.
void IRSharpAc::setLightToggle(const bool on) {
if (_model != sharp_ac_remote_model_t::A907) _setEconoToggle(on);
}
/// Get the Light toggle setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
/// @note Not available on the A907 model.
bool IRSharpAc::getLightToggle(void) const {
return _model != sharp_ac_remote_model_t::A907 && _getEconoToggle();
}
/// Get how long the timer is set for, in minutes.
/// @return The time in nr of minutes.
uint16_t IRSharpAc::getTimerTime(void) const {
return _.TimerHours * kSharpAcTimerIncrement * 2 +
((_.Special == kSharpAcSpecialTimerHalfHour) ? kSharpAcTimerIncrement
: 0);
}
/// Is the Timer enabled?
/// @return true, the setting is on. false, the setting is off.
bool IRSharpAc::getTimerEnabled(void) const { return _.TimerEnabled; }
/// Get the current timer type.
/// @return true, It's an "On" timer. false, It's an "Off" timer.
bool IRSharpAc::getTimerType(void) const { return _.TimerType; }
/// Set or cancel the timer function.
/// @param[in] enable Is the timer to be enabled (true) or canceled(false)?
/// @param[in] timer_type An On (true) or an Off (false). Ignored if canceled.
/// @param[in] mins Nr. of minutes the timer is to be set to.
/// @note Rounds down to 30 min increments. (max: 720 mins (12h), 0 is Off)
void IRSharpAc::setTimer(bool enable, bool timer_type, uint16_t mins) {
uint8_t half_hours = std::min(mins / kSharpAcTimerIncrement,
kSharpAcTimerHoursMax * 2);
if (half_hours == 0) enable = false;
if (!enable) {
half_hours = 0;
timer_type = kSharpAcOffTimerType;
}
_.TimerEnabled = enable;
_.TimerType = timer_type;
_.TimerHours = half_hours / 2;
// Handle non-round hours.
_.Special = (half_hours % 2) ? kSharpAcSpecialTimerHalfHour
: kSharpAcSpecialTimer;
setPowerSpecial(kSharpAcPowerTimerSetting);
}
/// Get the Clean setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRSharpAc::getClean(void) const {
return _.Clean;
}
/// Set the Economical mode toggle setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @note Officially A/C unit needs to be "Off" before clean mode can be entered
void IRSharpAc::setClean(const bool on) {
// Clean mode appears to be just default dry mode, with an extra bit set.
if (on) {
setMode(kSharpAcDry, false);
setPower(true, false);
} else {
// Restore the previous operation mode & fan speed.
setMode(_mode, false);
setFan(_fan, false);
}
_.Clean = on;
clearPowerSpecial();
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRSharpAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kSharpAcCool;
case stdAc::opmode_t::kHeat: return kSharpAcHeat;
case stdAc::opmode_t::kDry: return kSharpAcDry;
// No Fan mode.
default: return kSharpAcAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @param[in] model The enum of the appropriate model.
/// @return The native equivalent of the enum.
uint8_t IRSharpAc::convertFan(const stdAc::fanspeed_t speed,
const sharp_ac_remote_model_t model) {
switch (model) {
case sharp_ac_remote_model_t::A705:
case sharp_ac_remote_model_t::A903:
switch (speed) {
case stdAc::fanspeed_t::kLow: return kSharpAcFanA705Low;
case stdAc::fanspeed_t::kMedium: return kSharpAcFanA705Med;
default: {}; // Fall thru to the next/default clause if not the above
// special cases.
}
// FALL THRU
default:
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kSharpAcFanMin;
case stdAc::fanspeed_t::kMedium: return kSharpAcFanMed;
case stdAc::fanspeed_t::kHigh: return kSharpAcFanHigh;
case stdAc::fanspeed_t::kMax: return kSharpAcFanMax;
default: return kSharpAcFanAuto;
}
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRSharpAc::toCommonMode(const uint8_t mode) const {
switch (mode) {
case kSharpAcCool: return stdAc::opmode_t::kCool;
case kSharpAcHeat: return stdAc::opmode_t::kHeat;
case kSharpAcDry: return stdAc::opmode_t::kDry;
case kSharpAcAuto: // Also kSharpAcFan
switch (getModel()) {
case sharp_ac_remote_model_t::A705: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
break;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] speed The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRSharpAc::toCommonFanSpeed(const uint8_t speed) const {
switch (getModel()) {
case sharp_ac_remote_model_t::A705:
case sharp_ac_remote_model_t::A903:
switch (speed) {
case kSharpAcFanA705Low: return stdAc::fanspeed_t::kLow;
case kSharpAcFanA705Med: return stdAc::fanspeed_t::kMedium;
}
// FALL-THRU
default:
switch (speed) {
case kSharpAcFanMax: return stdAc::fanspeed_t::kMax;
case kSharpAcFanHigh: return stdAc::fanspeed_t::kHigh;
case kSharpAcFanMed: return stdAc::fanspeed_t::kMedium;
case kSharpAcFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
}
/// Convert a native vertical swing postion to it's common equivalent.
/// @param[in] pos A native position to convert.
/// @param[in] mode What operating mode are we in?
/// @return The common vertical swing position.
stdAc::swingv_t IRSharpAc::toCommonSwingV(const uint8_t pos,
const stdAc::opmode_t mode) const {
switch (pos) {
case kSharpAcSwingVHigh: return stdAc::swingv_t::kHighest;
case kSharpAcSwingVMid: return stdAc::swingv_t::kMiddle;
case kSharpAcSwingVLow: return stdAc::swingv_t::kLow;
case kSharpAcSwingVCoanda: // Coanda has mode dependent positionss
switch (mode) {
case stdAc::opmode_t::kCool: return stdAc::swingv_t::kHighest;
case stdAc::opmode_t::kHeat: return stdAc::swingv_t::kLowest;
default: return stdAc::swingv_t::kOff;
}
case kSharpAcSwingVToggle: return stdAc::swingv_t::kAuto;
default: return stdAc::swingv_t::kOff;
}
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @param[in] prev Ptr to the previous state if required.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRSharpAc::toCommon(const stdAc::state_t *prev) const {
stdAc::state_t result{};
// Start with the previous state if given it.
if (prev != NULL) result = *prev;
result.protocol = decode_type_t::SHARP_AC;
result.model = getModel();
result.power = getPower();
result.mode = toCommonMode(_.Mode);
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
result.turbo = getTurbo();
if (getSwingV() != kSharpAcSwingVIgnore)
result.swingv = toCommonSwingV(getSwingV(), result.mode);
result.filter = _.Ion;
result.econo = getEconoToggle();
result.light = getLightToggle();
result.clean = _.Clean;
// Not supported.
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRSharpAc::toString(void) const {
String result = "";
const sharp_ac_remote_model_t model = getModel();
result.reserve(170); // Reserve some heap for the string to reduce fragging.
result += addModelToString(decode_type_t::SHARP_AC, getModel(), false);
result += addLabeledString(isPowerSpecial() ? String("-")
: String(getPower() ? kOnStr
: kOffStr),
kPowerStr);
const uint8_t mode = _.Mode;
result += addModeToString(
mode,
// Make the value invalid if the model doesn't support an Auto mode.
(model == sharp_ac_remote_model_t::A907) ? kSharpAcAuto : 255,
kSharpAcCool, kSharpAcHeat, kSharpAcDry, kSharpAcFan);
result += addTempToString(getTemp());
switch (model) {
case sharp_ac_remote_model_t::A705:
case sharp_ac_remote_model_t::A903:
result += addFanToString(_.Fan, kSharpAcFanMax, kSharpAcFanA705Low,
kSharpAcFanAuto, kSharpAcFanAuto,
kSharpAcFanA705Med);
break;
default:
result += addFanToString(_.Fan, kSharpAcFanMax, kSharpAcFanMin,
kSharpAcFanAuto, kSharpAcFanAuto,
kSharpAcFanMed);
}
if (getSwingV() == kSharpAcSwingVIgnore) {
result += addIntToString(kSharpAcSwingVIgnore, kSwingVStr);
result += kSpaceLBraceStr;
result += kNAStr;
result += ')';
} else {
result += addSwingVToString(
getSwingV(), 0xFF,
// Coanda means Highest when in Cool mode.
(mode == kSharpAcCool) ? kSharpAcSwingVCoanda : kSharpAcSwingVToggle,
kSharpAcSwingVHigh,
0xFF, // Upper Middle is unused
kSharpAcSwingVMid,
0xFF, // Lower Middle is unused
kSharpAcSwingVLow,
kSharpAcSwingVCoanda,
kSharpAcSwingVOff,
// Below are unused.
kSharpAcSwingVToggle,
0xFF,
0xFF);
}
result += addBoolToString(getTurbo(), kTurboStr);
result += addBoolToString(_.Ion, kIonStr);
switch (model) {
case sharp_ac_remote_model_t::A705:
case sharp_ac_remote_model_t::A903:
result += addToggleToString(getLightToggle(), kLightStr);
break;
default:
result += addToggleToString(getEconoToggle(), kEconoStr);
}
result += addBoolToString(_.Clean, kCleanStr);
if (_.TimerEnabled)
result += addLabeledString(minsToString(getTimerTime()),
_.TimerType ? kOnTimerStr : kOffTimerStr);
return result;
}
#if DECODE_SHARP_AC
/// Decode the supplied Sharp A/C message.
/// Status: STABLE / Known working.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/638
/// @see https://github.com/ToniA/arduino-heatpumpir/blob/master/SharpHeatpumpIR.cpp
bool IRrecv::decodeSharpAc(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
// Compliance
if (strict && nbits != kSharpAcBits) return false;
// Match Header + Data + Footer
uint16_t used;
used = matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kSharpAcHdrMark, kSharpAcHdrSpace,
kSharpAcBitMark, kSharpAcOneSpace,
kSharpAcBitMark, kSharpAcZeroSpace,
kSharpAcBitMark, kSharpAcGap, true,
_tolerance, kMarkExcess, false);
if (used == 0) return false;
offset += used;
// Compliance
if (strict) {
if (!IRSharpAc::validChecksum(results->state)) return false;
}
// Success
results->decode_type = SHARP_AC;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_SHARP_AC