-
Notifications
You must be signed in to change notification settings - Fork 837
/
Copy pathir_Tcl.cpp
616 lines (560 loc) · 23 KB
/
ir_Tcl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
// Copyright 2019, 2021, 2022 David Conran
/// @file
/// @brief Support for TCL protocols.
#include "ir_Tcl.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRremoteESP8266.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
const uint8_t kTcl112AcTimerResolution = 20; // Minutes
const uint16_t kTcl112AcTimerMax = 720; // Minutes (12 hrs)
const uint16_t kTcl96AcHdrMark = 1056; // uSeconds.
const uint16_t kTcl96AcHdrSpace = 550; // uSeconds.
const uint16_t kTcl96AcBitMark = 600; // uSeconds.
const uint32_t kTcl96AcGap = kDefaultMessageGap; // Just a guess.
const uint8_t kTcl96AcSpaceCount = 4;
const uint16_t kTcl96AcBitSpaces[kTcl96AcSpaceCount] = {360, // 0b00
838, // 0b01
2182, // 0b10
1444}; // 0b11
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addModelToString;
using irutils::addSwingVToString;
using irutils::addTempFloatToString;
using irutils::minsToString;
#if SEND_TCL112AC
/// Send a TCL 112-bit A/C message.
/// Status: Beta / Probably working.
/// @param[in] data The message to be sent.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendTcl112Ac(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
sendGeneric(kTcl112AcHdrMark, kTcl112AcHdrSpace,
kTcl112AcBitMark, kTcl112AcOneSpace,
kTcl112AcBitMark, kTcl112AcZeroSpace,
kTcl112AcBitMark, kTcl112AcGap,
data, nbytes, 38000, false, repeat, 50);
}
#endif // SEND_TCL112AC
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRTcl112Ac::IRTcl112Ac(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Set up hardware to be able to send a message.
void IRTcl112Ac::begin(void) { _irsend.begin(); }
#if SEND_TCL112AC
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRTcl112Ac::send(const uint16_t repeat) {
uint8_t save[kTcl112AcStateLength];
// Do we need to send the special "quiet" message?
if (_quiet != _quiet_prev) {
// Backup the current state.
std::memcpy(save, _.raw, kTcl112AcStateLength);
const uint8_t quiet_off[kTcl112AcStateLength] = {
0x23, 0xCB, 0x26, 0x02, 0x00, 0x40, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x65};
// Use a known good quiet/mute off/type 2 state for the time being.
// Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/1528#issuecomment-876989044
setRaw(quiet_off);
setQuiet(_quiet);
// Send it.
_irsend.sendTcl112Ac(getRaw(), kTcl112AcStateLength, repeat);
// Now it's been sent, update the quiet previous state.
_quiet_prev = _quiet;
// Restore the old state.
setRaw(save);
// Make sure it looks like a normal TCL mesg if needed.
if (_.MsgType == kTcl112AcNormal) _.isTcl = true;
}
// Send the normal (type 1) state.
_irsend.sendTcl112Ac(getRaw(), kTcl112AcStateLength, repeat);
}
#endif // SEND_TCL112AC
/// Calculate the checksum for a given state.
/// @param[in] state The array to calc the checksum of.
/// @param[in] length The length/size of the array.
/// @return The calculated checksum value.
uint8_t IRTcl112Ac::calcChecksum(uint8_t state[], const uint16_t length) {
if (length) {
if (length > 4 && state[3] == 0x02) { // Special nessage?
return sumBytes(state, length - 1, 0xF); // Checksum needs an offset.
} else {
return sumBytes(state, length - 1);
}
} else {
return 0;
}
}
/// Calculate & set the checksum for the current internal state of the remote.
/// @param[in] length The length/size of the internal array to checksum.
void IRTcl112Ac::checksum(const uint16_t length) {
// Stored the checksum value in the last byte.
if (length > 1)
_.Sum = calcChecksum(_.raw, length);
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The length/size of the array.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRTcl112Ac::validChecksum(uint8_t state[], const uint16_t length) {
return (length > 1 && state[length - 1] == calcChecksum(state, length));
}
/// Check the supplied state looks like a TCL112AC message.
/// @param[in] state The array to verify the checksum of.
/// @note Assumes the state is the correct size.
/// @return true, if the state looks like a TCL112AC message. Otherwise, false.
/// @warning This is just a guess.
bool IRTcl112Ac::isTcl(const uint8_t state[]) {
Tcl112Protocol mesg;
std::memcpy(mesg.raw, state, kTcl112AcStateLength);
return (mesg.MsgType != kTcl112AcNormal) || mesg.isTcl;
}
/// Reset the internal state of the emulation. (On, Cool, 24C)
void IRTcl112Ac::stateReset(void) {
// A known good state. (On, Cool, 24C)
static const uint8_t reset[kTcl112AcStateLength] = {
0x23, 0xCB, 0x26, 0x01, 0x00, 0x24, 0x03, 0x07, 0x40, 0x00, 0x00, 0x00,
0x00, 0x03};
std::memcpy(_.raw, reset, kTcl112AcStateLength);
_quiet = false;
_quiet_prev = false;
_quiet_explictly_set = false;
}
/// Get/Detect the model of the A/C.
/// @return The enum of the compatible model.
tcl_ac_remote_model_t IRTcl112Ac::getModel(void) const {
return isTcl(_.raw) ? tcl_ac_remote_model_t::TAC09CHSD
: tcl_ac_remote_model_t::GZ055BE1;
}
/// Set the model of the A/C to emulate.
/// @param[in] model The enum of the appropriate model.
void IRTcl112Ac::setModel(const tcl_ac_remote_model_t model) {
_.isTcl = (model != tcl_ac_remote_model_t::GZ055BE1);
}
/// Get a PTR to the internal state/code for this protocol.
/// @return PTR to a code for this protocol based on the current internal state.
uint8_t* IRTcl112Ac::getRaw(void) {
checksum();
return _.raw;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] new_code A valid code for this protocol.
/// @param[in] length The length/size of the new_code array.
void IRTcl112Ac::setRaw(const uint8_t new_code[], const uint16_t length) {
std::memcpy(_.raw, new_code, std::min(length, kTcl112AcStateLength));
}
/// Set the requested power state of the A/C to on.
void IRTcl112Ac::on(void) { setPower(true); }
/// Set the requested power state of the A/C to off.
void IRTcl112Ac::off(void) { setPower(false); }
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTcl112Ac::setPower(const bool on) { _.Power = on; }
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRTcl112Ac::getPower(void) const { return _.Power; }
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRTcl112Ac::getMode(void) const { return _.Mode; }
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
/// @note Fan/Ventilation mode sets the fan speed to high.
/// Unknown values default to Auto.
void IRTcl112Ac::setMode(const uint8_t mode) {
// If we get an unexpected mode, default to AUTO.
switch (mode) {
case kTcl112AcFan:
setFan(kTcl112AcFanHigh);
// FALLTHRU
case kTcl112AcAuto:
case kTcl112AcCool:
case kTcl112AcHeat:
case kTcl112AcDry:
_.Mode = mode;
break;
default:
_.Mode = kTcl112AcAuto;
}
}
/// Set the temperature.
/// @param[in] celsius The temperature in degrees celsius.
/// @note The temperature resolution is 0.5 of a degree.
void IRTcl112Ac::setTemp(const float celsius) {
// Make sure we have desired temp in the correct range.
float safecelsius = std::max(celsius, kTcl112AcTempMin);
safecelsius = std::min(safecelsius, kTcl112AcTempMax);
// Convert to integer nr. of half degrees.
uint8_t nrHalfDegrees = safecelsius * 2;
// Do we have a half degree celsius?
_.HalfDegree = nrHalfDegrees & 1;
_.Temp = static_cast<uint8_t>(kTcl112AcTempMax - nrHalfDegrees / 2);
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
/// @note The temperature resolution is 0.5 of a degree.
float IRTcl112Ac::getTemp(void) const {
float result = kTcl112AcTempMax - _.Temp;
if (_.HalfDegree) result += 0.5;
return result;
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
/// @note Unknown speeds will default to Auto.
void IRTcl112Ac::setFan(const uint8_t speed) {
switch (speed) {
case kTcl112AcFanAuto:
case kTcl112AcFanMin:
case kTcl112AcFanLow:
case kTcl112AcFanMed:
case kTcl112AcFanHigh:
_.Fan = speed;
break;
default:
_.Fan = kTcl112AcFanAuto;
}
}
/// Get the current fan speed setting.
/// @return The current fan speed/mode.
uint8_t IRTcl112Ac::getFan(void) const { return _.Fan; }
/// Set the economy setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTcl112Ac::setEcono(const bool on) { _.Econo = on; }
/// Get the economy setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRTcl112Ac::getEcono(void) const { return _.Econo; }
/// Set the Health (Filter) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTcl112Ac::setHealth(const bool on) { _.Health = on; }
/// Get the Health (Filter) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRTcl112Ac::getHealth(void) const { return _.Health; }
/// Set the Light (LED/Display) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTcl112Ac::setLight(const bool on) { _.Light = !on; } // Cleared when on.
/// Get the Light (LED/Display) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRTcl112Ac::getLight(void) const { return !_.Light; }
/// Set the horizontal swing setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTcl112Ac::setSwingHorizontal(const bool on) { _.SwingH = on; }
/// Get the horizontal swing setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRTcl112Ac::getSwingHorizontal(void) const { return _.SwingH; }
/// Set the vertical swing setting of the A/C.
/// @param[in] setting The value of the desired setting.
void IRTcl112Ac::setSwingVertical(const uint8_t setting) {
switch (setting) {
case kTcl112AcSwingVOff:
case kTcl112AcSwingVHighest:
case kTcl112AcSwingVHigh:
case kTcl112AcSwingVMiddle:
case kTcl112AcSwingVLow:
case kTcl112AcSwingVLowest:
case kTcl112AcSwingVOn:
_.SwingV = setting;
}
}
/// Get the vertical swing setting of the A/C.
/// @return The current setting.
uint8_t IRTcl112Ac::getSwingVertical(void) const { return _.SwingV; }
/// Set the Turbo setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTcl112Ac::setTurbo(const bool on) {
_.Turbo = on;
if (on) {
_.Fan = kTcl112AcFanHigh;
_.SwingV = kTcl112AcSwingVOn;
}
}
/// Get the Turbo setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRTcl112Ac::getTurbo(void) const { return _.Turbo; }
/// Set the Quiet setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTcl112Ac::setQuiet(const bool on) {
_quiet_explictly_set = true;
_quiet = on;
if (_.MsgType == kTcl112AcSpecial) _.Quiet = on;
}
/// Get the Quiet setting of the A/C.
/// @param[in] def The default value to use if we are not sure.
/// @return true, the setting is on. false, the setting is off.
bool IRTcl112Ac::getQuiet(const bool def) const {
if (_.MsgType == kTcl112AcSpecial)
return _.Quiet;
else
return _quiet_explictly_set ? _quiet : def;
}
/// Get how long the On Timer is set for, in minutes.
/// @return The time in nr of minutes.
uint16_t IRTcl112Ac::getOnTimer(void) const {
return _.OnTimer * kTcl112AcTimerResolution;
}
/// Set or cancel the On Timer function.
/// @param[in] mins Nr. of minutes the timer is to be set to.
/// @note Rounds down to 20 min increments. (max: 720 mins (12h), 0 is Off)
void IRTcl112Ac::setOnTimer(const uint16_t mins) {
_.OnTimer = std::min(mins, kTcl112AcTimerMax) / kTcl112AcTimerResolution;
_.OnTimerEnabled = _.OnTimer > 0;
_.TimerIndicator = _.OnTimerEnabled || _.OffTimerEnabled;
}
/// Get how long the Off Timer is set for, in minutes.
/// @return The time in nr of minutes.
uint16_t IRTcl112Ac::getOffTimer(void) const {
return _.OffTimer * kTcl112AcTimerResolution;
}
/// Set or cancel the Off Timer function.
/// @param[in] mins Nr. of minutes the timer is to be set to.
/// @note Rounds down to 20 min increments. (max: 720 mins (12h), 0 is Off)
void IRTcl112Ac::setOffTimer(const uint16_t mins) {
_.OffTimer = std::min(mins, kTcl112AcTimerMax) / kTcl112AcTimerResolution;
_.OffTimerEnabled = _.OffTimer > 0;
_.TimerIndicator = _.OnTimerEnabled || _.OffTimerEnabled;
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRTcl112Ac::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kTcl112AcCool;
case stdAc::opmode_t::kHeat: return kTcl112AcHeat;
case stdAc::opmode_t::kDry: return kTcl112AcDry;
case stdAc::opmode_t::kFan: return kTcl112AcFan;
default: return kTcl112AcAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRTcl112Ac::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kTcl112AcFanMin;
case stdAc::fanspeed_t::kLow: return kTcl112AcFanLow;
case stdAc::fanspeed_t::kMedium: return kTcl112AcFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kTcl112AcFanHigh;
default: return kTcl112AcFanAuto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRTcl112Ac::toCommonMode(const uint8_t mode) {
switch (mode) {
case kTcl112AcCool: return stdAc::opmode_t::kCool;
case kTcl112AcHeat: return stdAc::opmode_t::kHeat;
case kTcl112AcDry: return stdAc::opmode_t::kDry;
case kTcl112AcFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a stdAc::swingv_t enum into it's native setting.
/// @param[in] position The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRTcl112Ac::convertSwingV(const stdAc::swingv_t position) {
switch (position) {
case stdAc::swingv_t::kOff: return kTcl112AcSwingVOff;
case stdAc::swingv_t::kHighest: return kTcl112AcSwingVHighest;
case stdAc::swingv_t::kHigh: return kTcl112AcSwingVHigh;
case stdAc::swingv_t::kMiddle: return kTcl112AcSwingVMiddle;
case stdAc::swingv_t::kLow: return kTcl112AcSwingVLow;
case stdAc::swingv_t::kLowest: return kTcl112AcSwingVLowest;
default: return kTcl112AcSwingVOn;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] spd The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRTcl112Ac::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kTcl112AcFanHigh: return stdAc::fanspeed_t::kMax;
case kTcl112AcFanMed: return stdAc::fanspeed_t::kMedium;
case kTcl112AcFanLow: return stdAc::fanspeed_t::kLow;
case kTcl112AcFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert a native vertical swing postion to it's common equivalent.
/// @param[in] setting A native position to convert.
/// @return The common vertical swing position.
stdAc::swingv_t IRTcl112Ac::toCommonSwingV(const uint8_t setting) {
switch (setting) {
case kTcl112AcSwingVOff: return stdAc::swingv_t::kOff;
default: return stdAc::swingv_t::kAuto;
}
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @param[in] prev Ptr to the previous state if required.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRTcl112Ac::toCommon(const stdAc::state_t *prev) const {
stdAc::state_t result{};
// Start with the previous state if given it.
if (prev != NULL) result = *prev;
result.protocol = decode_type_t::TCL112AC;
result.model = getModel();
result.quiet = getQuiet(result.quiet);
// The rest only get updated if it is a "normal" message.
if (_.MsgType == kTcl112AcNormal) {
result.power = _.Power;
result.mode = toCommonMode(_.Mode);
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
result.swingv = toCommonSwingV(_.SwingV);
result.swingh = _.SwingH ? stdAc::swingh_t::kAuto : stdAc::swingh_t::kOff;
result.turbo = _.Turbo;
result.filter = _.Health;
result.econo = _.Econo;
result.light = getLight();
}
// Not supported.
result.clean = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRTcl112Ac::toString(void) const {
String result = "";
result.reserve(220); // Reserve some heap for the string to reduce fragging.
tcl_ac_remote_model_t model = getModel();
result += addModelToString(decode_type_t::TCL112AC, model, false);
result += addIntToString(_.MsgType, D_STR_TYPE);
switch (_.MsgType) {
case kTcl112AcNormal:
result += addBoolToString(_.Power, kPowerStr);
result += addModeToString(_.Mode, kTcl112AcAuto, kTcl112AcCool,
kTcl112AcHeat, kTcl112AcDry, kTcl112AcFan);
result += addTempFloatToString(getTemp());
result += addFanToString(_.Fan, kTcl112AcFanHigh, kTcl112AcFanLow,
kTcl112AcFanAuto, kTcl112AcFanMin,
kTcl112AcFanMed);
result += addSwingVToString(_.SwingV, kTcl112AcSwingVOff,
kTcl112AcSwingVHighest,
kTcl112AcSwingVHigh,
0xFF, // unused
kTcl112AcSwingVMiddle,
0xFF, // unused
kTcl112AcSwingVLow,
kTcl112AcSwingVLowest,
kTcl112AcSwingVOff,
kTcl112AcSwingVOn, // Swing
0xFF, 0xFF); // Both Unused
if (model != tcl_ac_remote_model_t::GZ055BE1) {
result += addBoolToString(_.SwingH, kSwingHStr);
result += addBoolToString(_.Econo, kEconoStr);
result += addBoolToString(_.Health, kHealthStr);
result += addBoolToString(_.Turbo, kTurboStr);
result += addBoolToString(getLight(), kLightStr);
}
result += addLabeledString(
_.OnTimerEnabled ? minsToString(getOnTimer()) : kOffStr,
kOnTimerStr);
result += addLabeledString(
_.OffTimerEnabled ? minsToString(getOffTimer()) : kOffStr,
kOffTimerStr);
break;
case kTcl112AcSpecial:
result += addBoolToString(_.Quiet, kQuietStr);
break;
}
return result;
}
#if DECODE_TCL112AC
/// @file
/// @note There is no `decodedecodeTcl112Ac()`.
/// It's the same as `decodeMitsubishi112()`. A shared routine is used.
/// You can find it in: ir_Mitsubishi.cpp
#endif // DECODE_TCL112AC
#if SEND_TCL96AC
/// Send a TCL 96-bit A/C message.
/// Status: BETA / Untested on a real device working.
/// @param[in] data The message to be sent.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendTcl96Ac(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
enableIROut(38);
for (uint16_t r = 0; r <= repeat; r++) {
// Header
mark(kTcl96AcHdrMark);
space(kTcl96AcHdrSpace);
// Data
for (uint16_t pos = 0; pos < nbytes; pos++) {
uint8_t databyte = data[pos];
for (uint8_t bits = 0; bits < 8; bits += 2) {
mark(kTcl96AcBitMark);
space(kTcl96AcBitSpaces[GETBITS8(databyte, 8 - 2, 2)]);
databyte <<= 2;
}
}
// Footer
mark(kTcl96AcBitMark);
space(kTcl96AcGap);
}
}
#endif // SEND_TCL96AC
#if DECODE_TCL96AC
/// Decode the supplied Tcl96Ac message.
/// Status: ALPHA / Experimental.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
bool IRrecv::decodeTcl96Ac(decode_results* results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (results->rawlen < nbits + kHeader + kFooter - 1 + offset)
return false; // Message is smaller than we expected.
if (strict && nbits != kTcl96AcBits)
return false; // Not strictly a TCL96AC message.
uint8_t data = 0;
// Header.
if (!matchMark(results->rawbuf[offset++], kTcl96AcHdrMark)) return false;
if (!matchSpace(results->rawbuf[offset++], kTcl96AcHdrSpace)) return false;
// Data (2 bits at a time)
for (uint16_t bits_so_far = 0; bits_so_far < nbits; bits_so_far += 2) {
if (bits_so_far % 8)
data <<= 2; // Make space for the new data bits.
else
data = 0;
if (!matchMark(results->rawbuf[offset++], kTcl96AcBitMark)) return false;
uint8_t value = 0;
while (value < kTcl96AcSpaceCount) {
if (matchSpace(results->rawbuf[offset], kTcl96AcBitSpaces[value])) {
data += value;
break;
}
value++;
}
if (value >= kTcl96AcSpaceCount) return false; // No matches.
offset++;
*(results->state + bits_so_far / 8) = data;
}
// Footer
if (!matchMark(results->rawbuf[offset++], kTcl96AcBitMark)) return false;
if (offset < results->rawlen &&
!matchAtLeast(results->rawbuf[offset], kTcl96AcGap)) return false;
// Success
results->decode_type = TCL96AC;
results->bits = nbits;
return true;
}
#endif // DECODE_TCL96AC