Input:
- a document (article body) segmented into paragraphs (potential pieces of evidence)
- a textual statement containing a claim (article headline)
Output:
- the stance of a document with respect to the corresponding claim (agree, disagree, discuss, unrelated)
Inference Outputs:
- k most similar paragraphs with their similarity scores
- k most similar snippets with their similarity scores
Dense Representation: word embeddings pre-trained on Twitter data (GloVe)
dense body (n_samples, n_paragraphs=9, max_paragraph_len=15, embedding_dim=100)
dense claim (n_samples, max_claim_len=15, embedding_dim=100)
Sparse Representation: term frequency–inverse document frequency
sparse body (n_samples, n_paragraphs=9, vocab_size)
sparse claim (n_samples, vocab_size)
dense body ---> TimeDistributed (LSTM, 100 units) -----------> lstm body (n_samples, 9, 100)
dense body ---> TimeDistributed (CNN, 100 filters, size 5) --> cnn body (n_samples, 9, 11, 100)
cnn body -----> MaxOut --------------------------------------> cnn body (n_samples, 9, 11)
dense claim --> LSTM (100 units) -----------> lstm claim (n_samples, 100)
dense claim --> CNN (100 filters, size 5) --> cnn claim (n_samples, 11, 100)
cnn claim ----> MaxOut --------------------------------------> cnn claim (n_samples, 11)
sparse body x sparse claim ---> p tfidf (n_samples, 9) # similarity matrix
lstm body * p tfidf ----------> lstm body # memory update
lstm body x lstm claim -------> p lstm (n_samples, 9) # similarity matrix
cnn body * p lstm ------------> cnn body # memory update
cnn body x cnn claim ---------> p cnn (n_samples, 9) # similarity matrix
concatenate [ mean(cnn body),
max(p cnn), mean(p cnn),
max(p lstm), mean(p lstm),
max(p tfidf), mean(p tfidf) ] --> output
concatenate [ output, lstm claim, cnn claim ] --> response
response ---> MLP (300 units, relu) ------------> response
response ---> DropOut (0.5) --------------------> response
response ---> MLP (4 units, softmax) -----------> prediction
- a set of evidences (paragraphs) with similarity scores
- a set of snippets from the most similar paragraph with similarity scores